ANTIHOLOMORPHIC INVOLUTIONS
OF SPHERICAL COMPLEX SPACES

DMITRI AKHIEZER AND ANNETT PÜTMANN

(Communicated by Eric Bedford)

Abstract. Let X be a holomorphically separable irreducible reduced complex space, K a connected compact Lie group acting on X by holomorphic transformations, $\theta : K \to K$ a Weyl involution, and $\mu : X \to X$ an antiholomorphic map satisfying $\mu^2 = \text{Id}$ and $\mu(kx) = \theta(k)\mu(x)$ for $x \in X$, $k \in K$. We show that if $\mathcal{O}(X)$ is a multiplicity free K-module, then μ maps every K-orbit onto itself. For a spherical affine homogeneous space $X = G/H$ of the reductive group $G = K^C$ we construct an antiholomorphic map μ with these properties.

1. Introduction

Let $X = (X, \mathcal{O})$ be a complex space on which a compact Lie group K acts continuously by holomorphic transformations. Then the Fréchet space $\mathcal{O}(X)$ has the natural structure of a K-module. Recall that a K-module W is called multiplicity free if any irreducible K-module occurs in W with multiplicity 1 or does not occur at all. A self-map μ of a complex space X is called an antiholomorphic involution if μ is antiholomorphic and $\mu^2 = \text{Id}$. For complex manifolds, J. Faraut and E. G. F. Thomas gave an interesting and simple geometric condition which implies that $\mathcal{O}(X)$ is a multiplicity free K-module; see [FT]. Namely, for a complex manifold X the K-action in $\mathcal{O}(X)$ is multiplicity free if

\[
\text{there exists an antiholomorphic involution } \mu : X \to X \text{ with the property that, for every } x \in X, \text{ there is an element } k \in K \text{ such that } \mu(x) = k \cdot x.
\]

(FT)

The proof of Theorem 3 in [FT] goes without changes for irreducible reduced complex spaces. It should be noted that the setting in [FT] is more general. Namely, the authors consider any, not necessarily compact, group of holomorphic transformations of X and study invariant Hilbert subspaces of $\mathcal{O}(X)$. We will give a simplified proof of their result in our context; see Proposition 3.3. Our main purpose, however, is to prove the converse theorem for a special class of manifolds, namely, for Stein (or, equivalently, affine algebraic) homogeneous spaces of complex reductive groups.

Received by the editors December 10, 2005 and, in revised form, November 2, 2006.
2000 Mathematics Subject Classification. Primary 32M05; Secondary 43A85.
Research was supported by SFB/TR12 “Symmetrien und Universalität in mesoskopischen Systemen” of the Deutsche Forschungsgemeinschaft. The first author was supported in part by the Russian Foundation for Basic Research, Grant 04-01-00647.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication
1649
Let G be a connected reductive complex algebraic group and $K \subset G$ a maximal compact subgroup. We prove that an affine homogeneous space $X = G/H$ is spherical (or, equivalently, $O(X)$ is a multiplicity free K-module) if and only if the K-action on X satisfies (FT); see Theorem 5.5. Recall that a diffeomorphism μ of a manifold X with a K-action is said to be θ-equivariant if θ is an automorphism of K and $\mu(kx) = \theta(k)\mu(x)$ for all $x \in X$, $k \in K$. For $X = G/H$ spherical we can say more about μ in (FT). Namely, again by Theorem 5.5, μ can be chosen θ-equivariant, where θ is a Weyl involution of K.

In order to prove Theorem 5.5, we consider θ-equivariant antiholomorphic involutions in a more general context. Namely, let X be a holomorphically separable irreducible reduced complex space, K a connected compact Lie group of holomorphic transformations of X, and μ an antiholomorphic θ-equivariant involution of X. Then our Theorem 4.1 asserts that $O(X)$ is multiplicity free if and only if $\mu(x) \in Kx$ for all $x \in X$, i.e., if X has property (FT) with respect to μ.

Another important ingredient in the proof of Theorem 5.5 is the construction of two commuting involutions of G, a Weyl involution and a Cartan involution, which both preserve a given reductive spherical subgroup $H \subset G$; see Theorem 5.4. The proof is based on the results of [AV] and, therefore, on the classification of spherical subgroups.

At the end of our paper we give an example of an affine homogeneous space without θ-equivariant antiholomorphic involutions; see Proposition 6.3.

2. Fourier series of Harish-Chandra

Harish-Chandra carried over the classical Fourier series to the representation theory of compact Lie groups in Fréchet spaces; see [H-C]. In this paper, we will need only the representations in $O(X)$, where X is a complex space. We recall the result of Harish-Chandra in this setting. The details can be found in [H-C]; see also [A], Ch. 5.

Let K be a compact Lie group, \hat{K} its unitary dual, and dk the normalized Haar measure on K. For $\delta \in \hat{K}$ let χ_δ denote the character of δ multiplied by the dimension of δ. Suppose that K acts by holomorphic transformations on a complex space X. Then we have a continuous representation of K in $C(X)$ and in $O(X)$. We will assume that X is reduced and irreducible, so the representation is given by $k \cdot f(x) = f(k^{-1}x)$, where $k \in K$, $x \in X$.

Define an operator family $\{E_\delta\}_{\delta \in \hat{K}}$ in $O(X)$ by

$$E_\delta f(x) = \int_K \overline{\chi_\delta(k)} \cdot f(k^{-1}x) \cdot dk.$$

From orthogonality relations for characters it follows that all E_δ commute with the representation of K. Furthermore, $\{E_\delta\}_{\delta \in \hat{K}}$ is a family of projection operators, i.e., $E_\delta^2 = E_\delta$ and $E_\delta E_\epsilon = 0$ if $\delta \neq \epsilon$. Let $O_\delta(X) = E_\delta O(X)$. Then $O_\delta(X) = \text{Ker}(E_\delta - \text{Id})$, so $O_\delta(X)$ is a closed subspace. Again from orthogonality relations it follows that $O_\delta(X)$ is the isotypic component of type δ, i.e., $O_\delta(X)$ consists of all those vectors in $O(X)$ whose K-orbit is contained in a finite-dimensional K-submodule where the representation is some multiple of δ.

Harish-Chandra proved that each $f \in O(X)$ can be uniquely written in the form

$$f = \sum_{\delta \in \hat{K}} f_\delta,$$
where \(f_\delta = E_\delta(f) \in \mathcal{O}_\delta(X) \) and the convergence is absolute and uniform on compact subsets in \(X \).

Assume now that \(L \) is another compact Lie group acting by holomorphic transformations of another complex space \(Y \) subject to our assumptions. We will use similar notation for \(L \), in particular, \(\theta_\epsilon \) will denote the character of \(\epsilon \in \hat{L} \) multiplied by the dimension of \(\epsilon \). For the representation of \(K \times L \) in \(\mathcal{O}(X \times Y) \) defined by
\[
(k, l) \cdot f(x, y) = f(k^{-1}x, l^{-1}y), \quad x \in X, \ y \in Y, \ k \in K, \ l \in L,
\]
the type of an isotypic component is determined by a pair \(\delta \in \hat{K}, \epsilon \in \hat{L} \). The corresponding isotypic component will be denoted \(\mathcal{O}_{\delta, \epsilon}(X \times Y) \). Of course, the tensor product \(\mathcal{O}_\delta(X) \otimes \mathcal{O}_\epsilon(Y) \) is contained in \(\mathcal{O}_{\delta, \epsilon}(X \times Y) \). We will need the following lemma.

Lemma 2.1. If \(\dim \mathcal{O}_\delta(X) < \infty \) for some \(\delta \in \hat{K} \), then \(\mathcal{O}_{\delta, \epsilon}(X \times Y) = \mathcal{O}_\delta(X) \otimes \mathcal{O}_\epsilon(Y) \) for all \(\epsilon \in \hat{L} \).

Proof. Let \(f \in \mathcal{O}_{\delta, \epsilon}(X \times Y) \). Then
\[
\text{Fubini's theorem. The function } x \mapsto \int_K \chi_\delta(k) \cdot f(k^{-1}x, y) \cdot dk
\]
is in \(\mathcal{O}_\delta(X) \) for all \(y \in Y \). Let \(\{ \varphi_i \}_{i=1,...,N} \) be a basis of \(\mathcal{O}_\delta(X) \). Then
\[
\int_K \chi_\delta(k) \cdot f(k^{-1}x, y) \cdot dk = \sum_{i=1}^{N} c_i(y) \varphi_i(x)
\]
with some \(c_i \in \mathcal{O}(Y) \). Replace \(y \) by \(l^{-1}y \) in this equality, multiply it by \(\theta_\epsilon(l) \), and integrate over \(L \) against the Haar measure \(dl \). Then we get
\[
f(x, y) = \sum_{i=1}^{N} \varphi_i(x) \psi_i(y),
\]
where
\[
\psi_i(y) = \int_L \theta_\epsilon(l) \cdot c_i(l^{-1}y) \cdot dl \in \mathcal{O}_\epsilon(Y). \quad \square
\]

3. K-action and Complex Conjugation

As in the previous section, \(X \) is an irreducible reduced complex space and \(K \) is a compact group acting on \(X \) by holomorphic transformations.

Lemma 3.1. Let \(W \subset \mathcal{O}(X) \) be a finite-dimensional \(K \)-submodule. Introduce a \(K \)-invariant Hermitian inner product and choose a unitary basis \(\{ f_1, \ldots, f_N \} \) in \(W \). The function \(F := \sum_{j=1}^{N} f_j^* f_j \) is \(K \)-invariant. Furthermore, \(F \) does not depend on the choice of basis.
Proof. Let \(\{g_1, \ldots, g_N\} \) be another unitary basis of \(W \). There is a unitary transformation \(A : W \to W \) such that \(A(f_j) = g_j = \sum_{i=1}^N a_{ij} f_i \). We have

\[
\sum_{j=1}^N g_j \overline{g_j} = \sum_{j=1}^N \sum_{i,j'=1}^N a_{ij} \overline{a_{ij'}} f_i f_{j'} = \sum_{i,j'=1}^N \delta_{ij} f_i f_{j'} = F.
\]

Now, \(k \cdot F = \sum_{j=1}^N (k \cdot f_j)(k \cdot f_j) \) for \(k \in K \). But \(\{k \cdot f_1, \ldots, k \cdot f_N\} \) is another unitary basis of \(W \). Since \(F \) does not depend on the choice of basis, it follows that \(k \cdot F = F \) for any \(k \in K \).

\[\square\]

Lemma 3.2. If \(W \subset \mathcal{O}(X) \) is a finite-dimensional \(K \)-submodule, then \(\overline{W} \subset \overline{\mathcal{O}(X)} \) is also a \(K \)-submodule, which is isomorphic to the dual module \(W^* \).

Proof. Let \((f, g) \) be a \(K \)-invariant Hermitian product on \(W \). For \(f \in W \), \(\phi \in \overline{W} \) we have the bilinear pairing

\[\langle f, \phi \rangle = \langle f, \overline{\phi} \rangle,
\]

which is obviously \(K \)-invariant and non-degenerate. This shows that \(\overline{W} \) is isomorphic to \(W^* \).

Let \(\mu : X \to X \) be an antiholomorphic involution. Then, by definition, the function \(\mu f(x) = f(\mu x) \) is antiholomorphic for any \(f \in \mathcal{O}(X) \). We want to give a simple proof of the theorem of J. Faraut and E. G. F. Thomas in our setting.

Proposition 3.3. If the \(K \)-action on \(X \) satisfies (FT), then \(\mathcal{O}(X) \) is a multiplicity free \(K \)-module.

Proof. Assume the contrary. Let \(W, W' \subset \mathcal{O}(X) \) be two irreducible isomorphic \(K \)-submodules such that \(W \neq W' \). Define \(f_1, \ldots, f_N \in W \) as in Lemma 3.1. Fix a \(K \)-equivariant isomorphism \(\phi : W \to W' \) and let \(f_i' = \phi(f_i) \). By Lemma 3.1 the function \(F = \sum f_i f_i' \) is \(K \)-invariant. The same proof shows that the function \(G = \sum f_i f_i' \) is also \(K \)-invariant. By (FT) we have \(\mu F = F \) and \(\mu G = G \). Since the multiplication map \(\mathcal{O}(X) \otimes \overline{\mathcal{O}(X)} \to \mathcal{O}(X) \cdot \overline{\mathcal{O}(X)} \) is an isomorphism of vector spaces, it follows that

\[
\sum_i f_i \otimes f_i = \sum_i f_i \otimes f_i',
\]

and

\[
\sum_i f_i' \otimes f_i = \sum_i f_i \otimes f_i'.
\]

Therefore the linear span of \(\mu f_1, \ldots, \mu f_N \) coincides with the linear span of \(f_1, \ldots, f_N \) and with the linear span of \(\mu f_1', \ldots, \mu f_N' \). Thus \(\overline{\mu W} = \overline{\mu W'} = \overline{W} \), and \(W = W' \), contrary to our assumption.

\[\square\]
Lemma 3.4. Let θ be a Weyl involution of K and let $\mu : X \to X$ be a θ-equivariant antiholomorphic involution of X. If $W \subset \mathcal{O}(X)$ is a finite-dimensional K-submodule, then μW is also a K-submodule. Furthermore, \overline{W} and μW are isomorphic K-modules.

Proof. Introduce a K-invariant Hermitian inner product and choose a unitary basis $\{f_1, \ldots, f_N\}$ in W. Denote the representation in W by ρ. The condition $\mu(kx) = \theta(k)\mu(x)$ implies that
\[k : \mu f(x) = \mu f(k^{-1}x) = f(\mu(k^{-1}x)) = f(\theta(k)^{-1}x) = \theta(k)f(\mu x) = \mu \theta(k)f(x). \]
Hence μW is indeed a K-submodule with the representation $\rho \circ \theta$. Since θ is a Weyl involution, this representation is dual to ρ. But the representation in \overline{W} is also dual to ρ by Lemma 3.2, and our assertion follows. \qed

Lemma 3.5. Keep the notation of Lemma 3.4 and assume in addition that W is irreducible and $\mu W = \overline{W}$. Then for a K-invariant Hermitian inner product on W one has
\[\langle \mu f_1, \mu f_2 \rangle = \langle f_1, f_2 \rangle, \]
where $f_1, f_2 \in W$.

Proof. The new Hermitian inner product $\{f_1, f_2\} := \langle \mu f_1, \mu f_2 \rangle$ on W is also K-invariant. Since W is an irreducible K-module, it follows that $\{f_1, f_2\} = c\langle f_1, f_2 \rangle$, where $c > 0$. But then
\[\{\mu f_1, \mu f_2\} = \langle \mu f_1, \mu f_2 \rangle \]
and, on the other hand,
\[\{\mu f_1, \mu f_2\} = \langle f_1, f_2 \rangle \]
because μ is an involution. Thus
\[c\langle \mu f_1, \mu f_2 \rangle = \langle f_1, f_2 \rangle = c^{-1}\langle \mu f_1, \mu f_2 \rangle; \]
hence $c^2 = 1$ and $c = 1$. \qed

4. Holomorphically separable spaces

Since we assume that K is connected, the irreducible representations of K are determined by their highest weights. We denote by W_λ an irreducible K-module with highest weight λ and we write $\mathcal{O}_\lambda(X)$ instead of $\mathcal{O}_\delta(X)$, where $\delta \in K$ and $\lambda = \lambda(\delta)$ is the highest weight of δ. Those highest weights λ, for which W_λ occurs in our K-module $\mathcal{O}(X)$, form an additive semigroup, to be denoted by $\Lambda(X)$. In other words, $\Lambda(X)$ is the set of highest weights such that $\mathcal{O}_\lambda(X) \neq \{0\}$. The subspace of fixed vectors of a K-module W is denoted by W^K. We remark that if A is an algebra on which K acts as a group of automorphisms, then A^K is a subalgebra of A.

Theorem 4.1. Let X be a holomorphically separable irreducible reduced complex space, K a connected compact Lie group acting on X by holomorphic transformations, $\theta : K \to K$ a Weyl involution, and $\mu : X \to X$ a θ-equivariant antiholomorphic involution of X. Then $\mathcal{O}(X)$ is multiplicity free if and only if $\mu(x) \in Kx$ for all $x \in X$.

Proof. If $\mu(x) \in Kx$ for all $x \in X$, then (FT) guarantees that the K-action on $O(X)$ is multiplicity free; see the Introduction and Proposition 3.3.

We now prove the converse. Let $A(X) = O(X) \cdot \overline{O(X)}$. Since X is holomorphically separable, the algebra $A(X)$ separates points of X. By Stone-Weierstrass theorem $A(X)$ is dense in the algebra $C(X)$ of continuous functions on X. The standard averaging argument shows that $A(X)^K$ is dense in $C(X)^K$. Now, if Kx and Ky are two different K-orbits in X, then there is a K-invariant continuous function $f \in C(X)$ which separates these orbits. Since this function can be approximated by K-invariant functions from $A(X)$, it follows that $A(K)^K$ separates K-orbits. Let $\lambda \in \Lambda(X)$ be a highest weight which occurs in the decomposition of the K-algebra $O(X)$. Since $O(X)$ is multiplicity free, the isotypic component $O_\lambda(X)$ is irreducible. We can identify this isotypic component with W_λ, and so we write $W_\lambda = O_\lambda(X)$. Now apply Lemma 3.1 to construct a K-invariant function in $W_\lambda \cdot \overline{W_\lambda}$. Call this function F_λ. We claim that the family $\{F_\lambda\}_{\lambda \in \Lambda(X)}$ also separates K-orbits in X.

To prove the claim, it is enough to present each $F \in A(X)^K$ as the sum of a series

$$F = \sum_{\lambda \in \Lambda(X)} c_\lambda F_\lambda,$$

where the convergence is absolute and uniform on compact subsets in X. In order to prove this decomposition, consider the complex space \overline{X} with the conjugate complex structure. There is a natural K-action on \overline{X}, and so we obtain an action of $K \times K$ on $X \times \overline{X}$. Since $O(X) = \overline{O(X)}$, the isotypic components of the K-module $O(X)$ are just the submodules \overline{W}_λ. By Lemma 2.1 the isotypic components of the $(K \times K)$-module $O(X \times \overline{X})$ are the tensor products $W_\lambda \otimes \overline{W}_{\lambda'}$.

For any $F \in O(X \times \overline{X})$ the theorem of Harish-Chandra yields the decomposition

$$F = \sum F_{\lambda \lambda'} \text{ with } F_{\lambda \lambda'} \in W_\lambda \otimes \overline{W}_{\lambda'},$$

where the convergence is absolute and uniform on compact subsets in $X \times \overline{X}$. In particular, if $F \in (O(X) \otimes O(X))^K$, then all summands are K-invariant. But \overline{W}_λ is dual to W_λ by Lemma 3.2; hence $F_{\lambda \lambda'} = 0$ for $\lambda' \neq \lambda$ by Schur’s lemma. The remaining summands $F_{\lambda \lambda}$ are K-invariant elements in $W_\lambda \otimes \overline{W}_\lambda$. But the space $(W_\lambda \otimes \overline{W}_\lambda)^K$ is one-dimensional, again by Schur’s lemma. Therefore, restricting $F_{\lambda \lambda}$ to the diagonal in $X \times \overline{X}$, we get the functions proportional to the $F_{\lambda \lambda}$’s defined above.

Now, because $O(X)$ is multiplicity free, it follows from Lemma 3.4 that $\overline{W}_\lambda = \mu W_\lambda$. Furthermore, Lemma 3.5 shows that the composition of μ with complex conjugation preserves a K-invariant Hermitian product on W_λ. Therefore $\mu F_\lambda = F_\lambda$ by Lemma 3.1. Since the family of functions F_λ separates K-orbits, μ must preserve each of them or, equivalently, $\mu x \in Kx$ for all $x \in X$. □

Remark. For the torus $T = (S^1)^m$ the Weyl involution is given by $\theta(t) = t^{-1}$. Suppose that T acts on \mathbb{P}_n by $t \cdot (z_0 : \ldots : z_n) = (\chi_0(t)z_0 : \ldots : \chi_0(t)z_n)$ with some characters $\chi_i : T \rightarrow S^1$, $i = 0, \ldots, n$, and $\mu : \mathbb{P}_n \rightarrow \mathbb{P}_n$ is given by $\mu(z_0 : \ldots : z_n) = (\overline{z_0} : \ldots : \overline{z_n})$. Then μ is obviously θ-equivariant. However, if $m < n$, then μ cannot map each T-orbit onto itself. This shows that holomorphic separability of X in Theorem 4.1 is essential.
Let \mathfrak{k} be the Lie algebra of K and let $\mathfrak{g} = \mathfrak{k}^\mathbb{C}$ be its complexification. An irreducible reduced complex space X is called spherical under the action of a compact connected Lie group K if X is normal and there exists a point $x \in X$ such that the tangent space $T_x X$ is generated by the elements of a Borel subalgebra of \mathfrak{g}; see [AH].

Theorem 4.2. Let X be a normal Stein space, K a connected compact Lie group acting on X by holomorphic transformations, $\theta : K \to K$ a Weyl involution, and $\mu : X \to X$ a θ-equivariant antiholomorphic involution of X. Then X is spherical if and only if $\mu(x) \in Kx$ for all $x \in X$.

Proof. It is known that a normal Stein space X is spherical if and only if $\mathcal{O}(X)$ is a multiplicity free K-module [AH]. The result follows from Theorem 4.1. □

5. **Weyl involution and Cartan involution**

Throughout this section, except in Theorem 5.5, the word involution means an involutive automorphism of a group. This notion will be used for complex algebraic groups and for Lie groups. Let G be a connected reductive algebraic group over \mathbb{C} and let K be a connected compact Lie group. So far we considered Weyl involutions of K, but they can also be defined for G. Namely, an involution $\theta : G \to G$ is called a Weyl involution if there exists a maximal algebraic torus $T \subset G$ such that $\theta(t) = t^{-1}$ for all $t \in T$.

Lemma 5.1. Let G be a connected reductive complex algebraic group and let $K \subset G$ be a maximal compact subgroup. Any Weyl involution θ of K extends uniquely to a Weyl involution of G.

Proof. By Theorem 5.2.11 in [OV] any differentiable automorphism $K \to K$ extends uniquely to a polynomial automorphism $G \to G$. Let $\theta : K \to K$ be a Weyl involution and let $T \subset K$ be a maximal torus of K on which $\theta(t) = t^{-1}$. Now, the complexification $T^\mathbb{C}$ of T is a maximal torus of G. The extension of θ to G, which we again denote by θ, is a Weyl involution of G because $\theta(t) = t^{-1}$ for all $t \in T$. □

An algebraic subgroup $H \subset G$ is called spherical if G/H is a spherical variety, i.e., if a Borel subgroup of G acts on G/H with an open orbit. A reductive algebraic subgroup $H \subset G$ is called adapted if there exists a Weyl involution $\theta : G \to G$ such that $\theta(H) = H$ and $\theta|_{H^0}$ is a Weyl involution of the connected component H^0. A similar definition is used for compact subgroups of connected compact Lie groups.

Proposition 5.2. Any spherical reductive subgroup $H \subset G$ is adapted.

Proof. See [AV], Proposition 5.10. □

Proposition 5.3. Let $H \subset G$ be an adapted algebraic subgroup, $K \subset G$ and $L \subset H$ maximal compact subgroups, and $L \subset K$. Then L is adapted in K.

Proof. See [AV], Proposition 5.14. □

Theorem 5.4. Let G be a connected reductive group and let $H \subset G$ be a reductive spherical subgroup. Then there exist a Weyl involution $\theta : G \to G$ and a Cartan involution $\tau : G \to G$ such that $\theta \tau = \tau \theta$, $\theta(H) = H$, and $\tau(H) = H$.
Proof. Let L be a maximal compact subgroup of H and let K be a maximal compact subgroup of G that contains L. Then K is the fixed point subgroup G^τ of some Cartan involution τ. Since H is adapted in G, there is a Weyl involution $\theta : K \to K$ such that $\theta(L) = L$. For any $k \in K$, we have $\theta \tau(k) = \theta(k) = \tau \theta(k)$ by the definition of τ. Denote again by $\theta : G \to G$ the unique extension to G of the given Weyl involution of K. Since G is connected and the relation $\theta \tau(g) = \tau \theta(g)$ holds on K, it also holds on G.

Theorem 5.5. Let $X = G/H$ be an affine homogeneous space of a connected reductive algebraic group G. Let K be a maximal compact subgroup of G. Then X is spherical if and only if θ is satisfied for the action of K_τ on X. Moreover, if X is spherical, one can choose μ in (FT) to be θ-equivariant, where θ is a Weyl involution of K.

Proof. (FT) implies that $\mathcal{O}(X)$ is multiplicity free or, equivalently, that X is spherical. Conversely, assume that $X = G/H$ is a spherical variety. Since X is affine, H is a reductive subgroup by the Matsushima-Onishchik theorem. Define θ and τ as in Theorem 5.4 and put $\mu(g \cdot H) = \theta \tau(g) \cdot H$. The map $\mu : X \to X$ is well defined because $\theta \tau(H) = H$. The lift of μ to G is an antiholomorphic involutive automorphism, so it is obvious that μ is an antiholomorphic involution of X. Since $\theta \tau = \tau \theta$, it follows that $\theta(K) = K$. Therefore, for any $x = gH \in X$ one has

$$
\mu(kx) = \theta \tau(kg) \cdot H = \theta(k) \theta \tau(g) \cdot H = \theta(k) \mu(x)
$$

for all $k \in K$. From Theorem 4.2 it follows that $\mu(x) \in Kx$ for all $x \in X$. □

6. Non-spherical spaces: an example

We keep the notation of the previous section. For a spherical affine homogeneous space $X = G/H$, we constructed a θ-equivariant antiholomorphic involution μ. In this section we want to show that the sphericity assumption is essential.

Lemma 6.1. Let X be an irreducible reduced complex space with a holomorphic action of G. Let θ be any algebraic automorphism of G preserving a maximal compact subgroup $K \subset G$. Denote by τ the Cartan involution with fixed point subgroup K. If μ is an antiholomorphic involution of X satisfying $\mu(kx) = \theta(k) \mu(x)$ for all $x \in X$, $k \in K$, then one has $\mu(gx) = \theta \tau(g) \mu(x)$ for all $x \in X$, $g \in G$.

Proof. For every fixed $x \in X$ consider two antiholomorphic maps $\varphi_x : G \to X$ and $\psi_x : G \to X$, defined by $\varphi_x(g) = \mu(gx)$ and $\psi_x(g) = \theta \tau(g) \mu(x)$. Since the required identity holds for $g \in K$, the maps φ_x and ψ_x coincide on K. But K is a maximal totally real submanifold in G, so φ_x and ψ_x must coincide on G. □

Lemma 6.2. Let $X = G/H$, where $H \subset G$ is an algebraic reductive subgroup, θ a Weyl involution of G preserving K, and $\mu : X \to X$ an antiholomorphic involution of X satisfying $\mu(kx) = \theta(k) \mu(x)$. Then H and $\theta(H)$ are conjugate by an inner automorphism of G.

Proof. Assume first that $\tau(H) = H$. Let $x_0 = e \cdot H$ and $h \in H$. Then $\theta(h) \mu(x_0) = \theta(\tau(h)) \mu(x_0) = \mu(\tau(h)x_0) = \mu(x_0)$ by Lemma 6.1. It follows that $\theta(H)$ is the stabilizer of $\mu(x_0)$, so H and $\theta(H)$ are conjugate.

To remove the above assumption, take a maximal compact subgroup $L \subset H$ and a maximal compact subgroup $K_1 \subset G$, such that $L \subset K_1$. Then $K_1 = gKg^{-1}$ for some $g \in G$. The fixed point subgroup of the Cartan involution
\[\tau_1 := \text{Ad}(g)\tau\text{Ad}(g)^{-1} \] is exactly \(K_1 \), so \(\tau_1 \) is the identity on \(L \) and, consequently, \(\tau_1(H) = H \). Let \(H_1 := g^{-1}Hg \), then \(\tau(H_1) = (\text{Ad}g)^{-1}\tau_1(\text{Ad}g)H_1 = (\text{Ad}g)^{-1}\tau_1(H) = (\text{Ad}g)^{-1}(H) = g^{-1}Hg = H_1 \). Replacing \(H \) by \(H_1 \), we can apply the above argument.

\[\square \]

Proposition 6.3. Let \(G = \text{SO}_{10}(\mathbb{C}) \) and let \(H \subset G \) be the adjoint group of \(\text{SO}_5(\mathbb{C}) \). Let \(\theta \) be a Weyl involution of the maximal compact subgroup \(K = \text{SO}_{10}(\mathbb{R}) \). Then an antiholomorphic involution of \(X = G/H \) cannot be \(\theta \)-equivariant.

Proof. Extend \(\theta \) holomorphically to \(G \). In view of Lemma 6.2 it suffices to show that \(\theta(H) \) and \(H \) are not conjugate by an inner automorphism of \(G \). Assume that \(\theta(H) = g_0Hg_0^{-1} \). Then there is an automorphism \(\phi : H \to H \), such that \(\theta(h) = g_0\phi(h)g_0^{-1} \) for \(h \in H \). All automorphisms of \(H \) are inner, so \(\phi(h) = h_0h_0^{-1} \) for some \(h_0 \in H \). Therefore \(\theta(h) = g_1h_0^{-1} \) for all \(h \in H \), where \(g_1 = g_0h_0 \). Define an automorphism of \(\alpha : G \to G \) by \(\alpha := (\text{Ad}(g_1))^{-1} \cdot \theta \) and note that \(H \subset G^\alpha \), where \(G^\alpha \) is the fixed point subgroup of \(\alpha \).

Recall that E. B. Dynkin classified maximal subgroups of classical groups in [D]. Since \(B_2 \) does not occur in his Table 1, every irreducible representation of \(B_2 \) defines a maximal subgroup by Theorem 1.5 in [D]. In particular, \(H \) is a maximal connected subgroup in \(G \). Therefore, either (i) \(H \) is the connected component of \(G^\alpha \) or (ii) \(\alpha = \text{Id} \). Now, (ii) implies that \(\text{Ad}(g_1) = \theta \), thus \(\theta \) is an inner automorphism of \(G \), which is not the case. So we are left with (i). Applying the same argument to \(\beta = \alpha^2 \), we see that either (1) \(H \) is the connected component of \(G^\beta \) or (2) \(\beta = \text{Id} \). Since \(\beta \) is certainly an inner automorphism, (1) would imply that \(H \) is the centralizer of an element of \(G \). However, all centralizers have even codimension in \(G \) and \(\text{codim}(H) = 35 \). On the other hand, if (2) were true, then \(H \) would be a symmetric subgroup in \(G \). The list of symmetric spaces shows that this is not the case. The contradiction just obtained completes the proof. \[\square \]

References

Institute for Information Transmission Problems, B. Karetny 19, 101447 Moscow, Russia

E-mail address: akhiezer@mccme.ru

Ruhr-Universität Bochum, Fakultät für Mathematik, Universitätstrasse 150, 44780 Bochum, Germany

E-mail address: annett.puettmann@rub.de