SEMI-COMPACTNESS
OF POSITIVE DUNFORD–PETTIS OPERATORS
ON BANACH LATTICES

BELMESNAOUI AQZZOUZ, REDOUANE NOUIRA, AND LARBI ZRAOULA

(Communicated by Joseph A. Ball)

ABSTRACT. We investigate Banach lattices on which each positive Dunford–Pettis operator is semi-compact and the converse. As an interesting consequence, we obtain Theorem 2.7 of Aliprantis–Burkinshaw and an element of Theorem 1 of Wickstead.

1. Introduction and notation

An operator T from a Banach space E into a Banach lattice F is said to be semi-compact if for each $\varepsilon > 0$, there exists some $u \in F^+$ such that $T(B_E) \subset [-u, u] + \varepsilon B_F$ where B_H is the closed unit ball of $H = E$ or F and $F^+ = \{x \in F : 0 \leq x\}$.

An operator T between two Banach spaces E and F is said to be Dunford–Pettis if the image of each weakly compact subset of E is a compact subset of F.

In contrast to compact operators, the class of semi-compact (resp. Dunford–Pettis) operators does not satisfy the analogue of Schauder’s Theorem. However, the class of semi-compact operators satisfies the domination problem (Theorem 18.20 of [3]), but the class of Dunford–Pettis operators fails to satisfy this property, as was proved in [1], [7] and [9].

Finally, a semi-compact operator is not necessarily Dunford–Pettis and, conversely, a Dunford–Pettis operator is not necessarily semi-compact.

In [4] and [5] we studied the compactness of the class of positive Dunford–Pettis operators. And in [6] we characterized Banach lattices on which each positive Dunford–Pettis operator is weakly compact. Also, it follows from Aliprantis and Burkinshaw ([1], Theorem 3.4) that if E and F are two Banach lattices such that E has an order-continuous norm, then each regular Dunford–Pettis operator is AM-compact. Our objective in this paper is to continue the investigation of Banach lattices on which each positive Dunford–Pettis operator is semi-compact and the converse. We will characterize Banach lattices for which each positive Dunford–Pettis operator is semi-compact, and we will give some interesting consequences. Next, we will prove a sufficient condition under which a positive semi-compact operator is weakly compact. More precisely, we will show that if the norm of a Banach lattice F is order continuous, then each positive semi-compact operator...
from a Banach lattice E into F is weakly compact. As consequence, we shall obtain some conditions for which the class of Dunford–Pettis operators, the class of semi-compact operators, the class of weakly compact operators, and the class of compact operators coincide. Finally, whenever E is an order σ-complete Banach lattice, we will establish that if each positive semi-compact operator from E into E is weakly compact (resp. Dunford–Pettis), then the norm of E is order continuous.

To state our results, we need to fix some notation and recall some definitions. A vector lattice E is an ordered vector space in which $\sup(x, y)$ exists for every $x, y \in E$. A subspace F of a vector lattice E is said to be a sublattice if for every pair of elements a, b of F the supremum of a and b, taken in E, belongs to F. A subset B of a vector lattice E is said to be solid if it follows from $|y| \leq |x|$ with $x \in B$ and $y \in E$ that $y \in B$. An order ideal of E is a solid subspace. Let E be a vector lattice, for each $x, y \in E$ with $x \leq y$, the set $[x, y] = \{z \in E : x \leq z \leq y\}$ is called an order interval. A subset of E is said to be order bounded if it is included in some order interval. A Banach lattice is a Banach space $(E, \|\|)$ such that E is a vector lattice and its norm satisfies the following property: for each $x, y \in E$ such that $|x| \leq |y|$, we have $\|x\| \leq \|y\|$. If E is a Banach lattice, its topological dual E', endowed with the dual norm, is also a Banach lattice. For more detail about Banach lattices, the reader is referred to the book of Zaanen [10].

2. Major results

We will use the term operator $T : E \to F$ between two Banach lattices to mean a bounded linear mapping. It is positive if $T(x) \geq 0$ in F whenever $x \geq 0$ in E. An operator $T : E \to F$ is regular if $T = T_1 - T_2$ where T_1 and T_2 are positive operators from E into F. It is well known that each positive linear mapping on a Banach lattice is continuous.

Also, a norm $\|\|$ of a Banach lattice E is order continuous if for each net (x_α) such that $x_\alpha \downarrow 0$ in E, the sequence (x_α) converges to 0 for the norm $\|\|$ where the notation $x_\alpha \downarrow 0$ means that (x_α) is decreasing, its infimum exists, and $\inf(x_\alpha) = 0$. For example, the norm of the Banach lattice l^1 is order continuous but the norm of the Banach lattice l^∞ is not.

To prove the next theorem, we need the following lemma:

Lemma 2.1. Let E, F be Banach lattices and let T be a positive Dunford–Pettis operator from E into F. If the topological dual E' of E has an order continuous norm, then for each $\varepsilon > 0$, there exists some $y \in E^+$ such that

$$T(B_E \cap E^+) \subset \varepsilon B_F + T([0, y]),$$

where B_H is the closed unit ball of $H = E, F$.

Proof. It follows from the proof of Theorem 2.7 and Theorem 2.8 of [1].

Recall that a nonzero element x of a vector lattice E is discrete if the order ideal generated by x equals the subspace generated by x. The vector lattice E is discrete if it admits a complete disjoint system of discrete elements. For example, the Banach lattice l^1 is discrete but $C([0, 1])$ is not discrete.

A Dunford–Pettis operator is not necessarily semi-compact. In fact, the identity operator $Id_c : c \to c$ is semi-compact but it is not Dunford–Pettis where c is the Banach lattice of all convergent sequences. The following theorem gives a
sufficient and necessary condition for which a regular Dunford–Pettis operator is semi-compact. In fact,

Theorem 2.2. Let E be a Banach lattice. Then the following assertions are equivalent:

1. E' has an order continuous norm.
2. Each positive Dunford–Pettis operator from E into F is semi-compact for each Banach lattice F.
3. Each positive Dunford–Pettis operator from E into E is semi-compact.

Proof. For the implication $1 \Rightarrow 2$. Let F be a Banach lattice and let T be a positive Dunford–Pettis operator from E into F. It follows from Lemma 2.1 that for each $\varepsilon > 0$, there exists some $y \in E^+$ such that

$$T(B_E^+ \cap [0,y]) \subset \varepsilon B_F^+ + T([0,y]),$$

where $B_H^+ = B_H \cap E^+$ for $H = E,F$.

Since

$$T([0,y]) \subset [0,T(y)],$$

we obtain

$$T(B_E^+) \subset \varepsilon B_F^+ + [0,T(y)].$$

This proves the result.

For the implication $3 \Rightarrow 1$. If the norm of E' is not order continuous, then it follows from the proof of Theorem 1 of Wickstead [9], that E contains a sublattice that is isomorphic to l^1 and there exists a positive projection P from E into l^1.

Consider the operator product

$$i \circ P : E \rightarrow l^1 \rightarrow E,$$

where i is the inclusion operator of l^1 in E. It is clear that $i \circ P$ is a positive Dunford–Pettis operator. We have to prove that $i \circ P$ is not semi-compact. If not, its restriction to l^1 is a semi-compact operator, and then the restriction of the operator $P \circ (i \circ P)$ to l^1, which coincides with the operator identity Id_{l^1} of l^1, is semi-compact; i.e. for each $\varepsilon > 0$, there exists some $y \in (l^1)^+$ such that

$$B_{l^1} \subset \varepsilon B_{l^1} + [-y,y].$$

Since the Banach lattice l^1 is discrete and has an order continuous norm, it follows from Theorem 3.22 of [2] that the order interval $[-y,y]$ is compact in l^1. Hence, the closed unit ball B_{l^1} is precompact. This presents a contradiction.

The implication $2 \Rightarrow 3$ is trivial.

Remark 2.3. If we fix the Banach lattice F, the implication $2 \Rightarrow 1$ of Theorem 2.2. is false. In fact, if we take F of finite dimension and $E = l^1$, it is clear that each positive Dunford–Pettis operator from l^1 into F is semi-compact, but it is well known that the norm of the topological dual $E' = l^\infty$ is not order continuous.

Recall from Zaanen [10] that a regular operator T from a vector lattice E into a Banach lattice F is said to be AM-compact if it carries each order-bounded subset of E onto a relatively compact subset of F.

As a consequence of Theorem 2.2 of [6] and the above theorem, we obtain
Corollary 2.4. Let E be a Banach lattice. Then the following statements are equivalent:
1. Each positive Dunford–Pettis operator from E into E is weakly compact.
2. Each positive Dunford–Pettis operator from E into E is semi-compact.
3. For each positive Dunford–Pettis operator T from E into E, the second power operator T^2 is compact.
4. For each pair of operators S and T from E into E such that $0 \leq S \leq T$ and T is Dunford–Pettis, the operator S is weakly compact.
5. The norm of the topological dual E' is order continuous.

The following result is a consequence of a theorem of Dodds and Fremlin ([10], Theorem 125.5) and Theorem 2.2:

Corollary 2.5. Let E and F be two Banach lattices such that E' and F have order continuous norms. Let T be a positive operator from E into F. Then the following assertions are equivalent:
1. T is compact.
2. T is Dunford–Pettis and AM-compact.
3. T is semi-compact and AM-compact.

Now by combining our Corollary 2.5 and Theorem 3.5 of Aliprantis and Burkinshaw [1], we obtain Theorem 2.7 of [1] as a consequence, which was the basic result of our papers [4] and [5].

Corollary 2.6. Let E be a Banach lattice such that E and its topological dual E' have order continuous norms. Then each positive Dunford–Pettis operator from E into E is compact.

Proof. Let T be a positive Dunford–Pettis operator from E into E. Since the norm of E is order continuous, it follows from Theorem 3.5 of [1] that T is AM-compact. Finally, Corollary 2.5 implies that T is compact.

Let T be a positive operator from a Banach lattice E into a Banach lattice F. If T' is the adjoint operator from F' into E' defined by $T'(f)(x) = f(T(x))$ for each $f \in F'$ and for each $x \in E$, it is clear that T' is positive.

Recall that a Banach space E has the Dunford–Pettis property if and only if each weakly compact operator on E, taking its value in another Banach space, is Dunford–Pettis.

Now, to give a sufficient condition under which each positive semi-compact operator is Dunford–Pettis, we study the compactness of a positive semi-compact operator.

Theorem 2.7. Let E and F be Banach lattices. Then each positive semi-compact operator from E into F is compact if one of the following statements is valid:
1. F is discrete and its norm is order continuous.
2. E' is a discrete order continuous norm, and F has an order continuous norm.
3. The norms of E, E' and F are order continuous, and E has the Dunford–Pettis property.

Proof. 1. Let T be a positive semi-compact operator from E into F. By Theorem 3.22 of [1], for each $y \in F^+$, the order interval $[0,y]$ is norm compact in F. On the other hand, for each $\varepsilon > 0$, there exists some $x \in F^+$ such that
$$T(B_E) \subset \varepsilon B_F + [-x,x].$$
This proves that $T(B_E)$ is norm relatively compact in F and hence T is compact.

2. Let T be a positive semi-compact operator from E into F. Since the norms of E' and F are order continuous, then the adjoint operator T' from F' into E' is semi-compact (Theorem 125.6 of [10]). As the Banach lattice E' is discrete and its norm is order continuous, then condition 1 implies that $T' : F' \to E'$ is compact, and therefore T is compact.

3. Let T be a positive semi-compact operator from E into F. Since F has an order continuous norm, it follows from Theorem 2.2 that T is weakly compact. Now, the Dunford–Pettis property of E implies that T is Dunford–Pettis. On the other hand, E and E' have order continuous norms, so Theorem 2.7 of Aliprantis and Burkinshaw [1] implies that T is compact.

□

As an immediate consequence of Theorem 2.6, we obtain a result of Wickstead ([8], Proposition 2.3 or [9], Theorem 1):

Corollary 2.8. Let E and F be Banach lattices, and let S and T be positive operators from E into F such that $0 \leq S \leq T$ and T is compact. If F is discrete and its norm is order continuous, then S is compact.

Recall that a semi-compact operator is not necessarily Dunford–Pettis. For example, the identity operator $\text{Id}_{l^1} : l^1 \to l^1$ is Dunford–Pettis but it is not semi-compact. Another consequence of Theorem 2.7 is the following:

Corollary 2.9. Let E and F be Banach lattices. If F is discrete and its norm is order continuous, then each positive semi-compact operator from E into F is Dunford–Pettis.

Recall that a semi-compact operator is not necessarily weakly compact, and conversely a weakly compact operator is not necessarily semi-compact. For example, the identity operator $\text{Id}_{l^2} : l^2 \to l^2$ is weakly compact but it is not semi-compact (if not, since l^2 is discrete and its norm is order continuous, it follows from Theorem 2.7 (1) that Id_{l^2} is compact) and conversely, the identity operator $\text{Id}_c : c \to c$ is semi-compact but it is not weakly compact.

The following proposition gives a sufficient condition under which a positive weakly compact operator is semi-compact:

Proposition 2.10. Let E and F be two Banach lattices. If E has the Dunford–Pettis property and its topological dual E' has an order continuous norm, then each positive weakly compact operator from E into F is semi-compact.

Proof. Let T be a positive weakly compact operator from E into F. Since E admits the Dunford–Pettis property, then T is Dunford–Pettis. Now the semi-compactness of T follows from the order continuousness of the norm of the topological dual E' (Theorem 2.2).

Conversely, we give a sufficient condition under which a positive semi-compact operator is weakly compact.

Theorem 2.11. Let E and F be two Banach lattices. If the norm of F is order continuous, then each positive semi-compact operator from E into F is weakly compact.
Proof. Let T be a positive semi-compact operator from E into F. Then for each $\varepsilon > 0$, there exists some $y \in F^+$ such that
\[
T(B_E \cap E^+) \subset \varepsilon B_F + [0, y],
\]
where B_H is the unit ball of $H = E, F$. Since F has an order continuous norm, then the order interval $[0, y]$ is weakly compact, and hence $T(B_E \cap E^+)$ is weakly precompact. To prove that $T(B_E \cap E^+)$ is weakly relatively compact, it is sufficient to show that the closure of $T(B_E \cap E^+)$, for the topology $\sigma (F, F')$, is weakly complete. To show this, we use the same proof as Theorem 2.2 of [6]. In fact, let $(T(x_i))_i$ be a Cauchy net for the topology $\sigma (F, F')$, where (x_i) is a net in $B_E \cap E^+$. Since $T(B_E \cap E^+)$ is relatively compact for $\sigma (F'', F')$ in the topological bidual F'', the sequence $(T(x_i))_i$ converges to some $\Psi \in F''$ for $\sigma (F'', F')$. Let $m \in \mathbb{N}^*$; it follows from (1), the existence of $y^m \in F^+$, $z^m_i \in B_F$ and $w^m_i \in [0, y^m]$ such that
\[
T(x_i) = \frac{1}{m} z^m + w^m_i.
\]
On the other hand, since $[0, y^m]$ is relatively weakly compact, there exists an accumulation point $a_m \in F$ of the net $(w^m_i)_i$.

If we fix $f \in F'$ with $\|f\| \leq 1$, then there exists some $i_0 \in I$ such that for each $i > i_0$, we have
\[
|f \circ T(x_i) - \Psi(f)| < \frac{1}{m},
\]
and hence
\[
|f(w^m_i) - \Psi(f)| < \frac{2}{m}.
\]
Since a_m is an accumulation point of the sequence $(w^m_i)_i$, there exists some $i > i_0$ such that
\[
|f(w^m_i) - f(a_m)| < \frac{1}{m}.
\]
This implies that
\[
|\Psi(f) - f(a_m)| < \frac{3}{m},
\]
and so
\[
\|\Psi - a_m\|_{F''} \leq \frac{3}{m},
\]
where $\|\cdot\|_{F''}$ is the norm of F''. It follows that (a_m) converges in norm to Ψ, and hence $\Psi \in F$. This proves that the closure of $T(B_E \cap E^+)$ for $\sigma (F, F')$ in F coincides with its closure in \hat{F} where \hat{F} is the completion of F for $\sigma (F, F')$. Hence, $T(B_E \cap E^+)^{(F, F')}$ is complete.

A Banach lattice E is said to be an AM-space if for each $x, y \in E$ such that $\inf \{x, y\} = 0$, we have $\|x + y\| = \max\{|\|x\|, \|y\|\}$. It is an AL-space if its topological dual E' is an AM-space. For example, the Banach lattice l^1 is an AL-space and the Banach lattice l^∞ is an AM-space.

As consequence of Theorem 2.11, we have:

Corollary 2.12. Let E be an AM-space with unit and F be a Banach lattice with an order continuous norm. Then each positive operator from E into F is weakly compact. In particular, each positive operator from E into l^1 is compact.
Proof. Let $T : E \rightarrow F$ be a positive operator. As E is an AM-space with unit, it follows that T is semi-compact. Now, since F has an order continuous norm, Theorem 2.11 implies that T is weakly compact.

Finally, let $S : E \rightarrow l^1$ be a positive operator where E is an AM-space with unit. Since l^1 has an order continuous norm, the operator S is weakly compact. On the other hand, $S = Id_{l^1} \circ S$, where $Id_{l^1} : l^1 \rightarrow l^1$ is the identity operator of l^1 which is Dunford–Pettis; hence, S is compact.

Remark 2.13. If E is a Banach lattice with a discrete topological dual E', then there exists a positive semi-compact operator which is not weakly compact. In fact, if we take $E = F = c$, then E' is discrete, and the identity operator Id_c of E is semi-compact but it is not weakly compact.

The following consequence of Theorem 2.11 gives another sufficient condition under which each positive semi-compact operator is Dunford–Pettis.

Corollary 2.14. Let E and F be two Banach lattices. If E has the Dunford–Pettis property and the norm of F is order continuous, then each positive semi-compact operator is Dunford–Pettis.

Proof. Let T be a positive semi-compact operator from E into F. Since the norm of F is order continuous, it follows from Theorem 2.11 that T is weakly compact. As E has the Dunford–Pettis property, the operator T is Dunford–Pettis.

Another consequence of Theorem 2.11 is the following:

Corollary 2.15. Let E and F be two Banach lattices such that E' and F have order continuous norms and E has the Dunford–Pettis property. Let $T : E \rightarrow F$ be a positive operator. Then the following assertions are equivalent:

1. T is Dunford–Pettis.
2. T is semi-compact.
3. T is weakly compact.

In particular, if we take $E = F$, under the same conditions as Corollary 2.15, we have the following result:

Corollary 2.16. Let E be a Banach lattice having the Dunford–Pettis property such that E' and E have order continuous norms. Let $T : E \rightarrow E$ be a positive operator. Then the following assertions are equivalent:

1. T is Dunford–Pettis.
2. T is semi-compact.
3. T is weakly compact.
4. T is compact.

Remark 2.17. Let E be a Banach lattice having the Dunford–Pettis property. If the topological dual E' is discrete with an order continuous norm, there exists a positive semi-compact operator which is not Dunford–Pettis. In fact, the identity operator Id_c of c is a positive semi-compact operator which is not Dunford–Pettis. However, the topological dual c' is discrete, c has the Dunford–Pettis property, and c' has an order continuous norm.

Whenever $E = F$ and E is order σ-complete (i.e. every majorized countable nonempty subset of E has a supremum), we obtain the following converse of Theorem 2.11:
Theorem 2.18. Let E be an order σ-complete Banach lattice. If each positive semi-compact operator from E into E is weakly compact (resp. Dunford–Pettis), then the norm of E is order continuous.

Proof. Assume that the norm of E is not order continuous. Since E is order σ-complete, it follows from the proof of Theorem 1 of Wickstead [9] that E contains a sublattice which is isomorphic to l^∞ and there exists a positive projection $P : E \rightarrow l^\infty$.

If we take the operator $i \circ P : E \rightarrow l^\infty \rightarrow E$, it is clear that $i \circ P$ is a semi-compact operator which is not weakly compact (resp. Dunford–Pettis). If not, the restriction of the operator $P \circ (i \circ P)$ to l^∞, which coincides with the identity operator Id_{l^∞} of l^∞, would be weakly compact (resp. Dunford–Pettis). This presents a contradiction.

Recall that Wickstead characterized Banach lattices which satisfy the problem of domination for the class of positive weakly compact operators ([8], Theorem 17.10). We observe that by the same proof as Theorem 17.10 of Wickstead [8], we obtain the following result:

Theorem 2.19. Let E and F be two Banach lattices. If every positive operator from E into F dominated by a compact operator is weakly compact, then either E' or F has an order continuous norm.

Proof. If the norms of F and E' are not order continuous, Wickstead constructed in the proof of [8], Theorem 17.10 two positive operators $S, T : E \rightarrow F$ such that $0 \leq S \leq T$ and T is compact but S is not weakly compact. This proves the result.

Whenever $E \neq F$, by combining Theorem 2.19 with Theorem 18.20 of [3] we obtain

Theorem 2.20. Let E and F be two Banach lattices. If each positive semi-compact operator from E into F is weakly compact, then one of the following assertions is valid:

1. F has an order continuous norm.
2. E' has an order continuous norm.

Proof. In fact, let $S, T : E \rightarrow F$ be two operators such that $0 \leq S \leq T$ and T is compact. Since T is semi-compact, it follows that S is semi-compact (Theorem 18.20 of [3]). Hence S is weakly compact and the result comes from Theorem 2.19.

Also, recall that Wickstead ([9], Theorem 2) studied the converse of the domination problem of the class of positive Dunford–Pettis operators. We remark that by the same proof as Theorem 2 of [9], we can establish the following result:

Theorem 2.21. For two Banach lattices E and F, the following assertions are equivalent:

1. Every positive operator from E into F dominated by a compact operator is Dunford–Pettis.
2. The norm of F is order continuous or the lattice operations of E are weakly sequentially continuous.
Proof. If the norm of F is not order continuous and the lattice operations of E are not weakly sequentially continuous, Wickstead constructed in the proof of Theorem 2 of [9] two positive operators $S, T : E \to F$ such that $0 \leq S \leq T$ and T is compact but S is not Dunford–Pettis. □

A combination of Theorem 2.21 and Theorem 18.20 of [3] gives

Theorem 2.22. Let E and F be Banach lattices. If each positive semi-compact operator from E into F is Dunford–Pettis, then one of the following assertions is valid:

1. The norm of F is order continuous.
2. The lattice operations of E are weakly sequentially continuous.

Proof. Let S and T be two positive operators from E into F such that $0 \leq S \leq T$ and T is compact. Since T is semi-compact, S is semi-compact ([3], Theorem 18.20) and then Dunford–Pettis. Now, the result follows from Theorem 2.21. □

Remark 2.23. Let E and F be two Banach lattices such that one of the following properties is valid:

1. The topological dual E' of E is discrete.
2. F is discrete.
3. The norm of E' is order continuous.

Then we can always find a positive semi-compact operator from E into F which is not Dunford–Pettis. In fact, the identity operator $I_d : c \to c$ is semi-compact which is not Dunford–Pettis but the above three conditions are satisfied by the Banach lattice c.

Remark 2.24. There exist Banach lattices E and F and there exists a positive Dunford–Pettis operator from E into F which is semi-compact but not necessarily weakly compact. In fact, we take the Banach lattice $E = F = l^1 \oplus l^\infty$. Since the norms of E and E' are not order continuous, it follows, from Theorem 1 of Wickstead [9], the existence of two operators S and T from E into E, such that $0 \leq S \leq T$ and T is compact but S is not compact. On the other hand, the lattice operations of E are weakly sequentially continuous (i.e. the sequence $(\|x_n\|)$ converges to 0 for the weak topology $\sigma(E, E')$ whenever the sequence (x_n) converges to 0 for $\sigma(E, E')$), then an application of Theorem 2 of Wickstead [9] implies that S is Dunford–Pettis. Now, as the norms of E and E' are not order continuous, the operator S is not necessarily weakly compact ([8], Theorem 2.2).

References

Département d’Economie, Faculté des Sciences Economiques, Juridiques et Sociales, Université Mohammed V-Souissi, B.P. 5295, Sala Eljadida, Morocco

E-mail address: baqzzouz@hotmail.com

Université Ibn Tofail, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra, Morocco

Université Ibn Tofail, Faculté des Sciences, Département de Mathématiques, B.P. 133, Kénitra, Morocco