H*-ALGEBRAS AND QUANTIZATION OF PARA-HERMITIAN SPACES

GERRIT VAN DIJK AND MICHAEL PEVZNER

(Communicated by Mikhail Shubin)

Abstract. In the present note we describe a family of H*-algebra structures on the set \(L^2(X) \) of square integrable functions on a rank-one para-Hermitian symmetric space \(X \).

INTRODUCTION

Let \(X \) be a rank-one para-Hermitian symmetric space. It is well known that \(X \) is isomorphic (up to a covering) to the quotient space \(SL(n, \mathbb{R})/GL(n-1, \mathbb{R}) \); see \([KK]\) for more details. We shall thus assume throughout this note that \(X = G/H \), where \(G = SL(n, \mathbb{R}) \) and \(H = GL(n-1, \mathbb{R}) \).

The space \(X \) allows the definition of a covariant symbolic calculus that generalizes the so-called convolution-first calculus on \(\mathbb{R}^2 \); see \([DM], [PU], [UU] \) for instance. Such a calculus, or quantization map \(\text{Op}_\sigma \), maps a suitable set of functions (or symbols) on \(X \) to linear operators acting on the representation space of the maximal degenerate series \(\pi_{-\frac{1}{2} + i\sigma} \) of the group \(G \). When applied to \(L^2(X) \), this induces a noncommutative algebra structure. On the other hand, the taking of the adjoint of an operator in such a calculus defines an involution on symbols. It turns out that these two data give rise to an H*-algebra structure on \(L^2(X) \).

According to the general theory, \([A], [L], [N] \), every H*-algebra is the direct orthogonal sum of its closed minimal two-sided ideals which are simple H*-algebras. The main result of this note is the explicit description of such a decomposition for the Hilbert algebra \(L^2(X) \) and its commutative subalgebra of \(SO(n, \mathbb{R}) \)-invariants. In \([DP] \) we have shown that the algebra structure of \(L^2(X) \) might be very useful and appropriate for a new interpretation of Rankin-Cohen brackets. Therefore a careful study of this structure is a next step in the process of its understanding.

1. DEFINITIONS AND BASIC FACTS

1.1. H*-algebras.

Definition 1.1. A set \(R \) is called an H*-algebra (or Hilbert algebra) if

1. \(R \) is a Banach algebra with involution;
2. \(R \) is a Hilbert space;
3. the norm on the algebra \(R \) coincides with the norm on the Hilbert space \(R \);

Received by the editors March 5, 2007.
2000 Mathematics Subject Classification. Primary 22E46, 43A85, 46B25.
Key words and phrases. Quantization, para-Hermitian symmetric spaces, Hilbert algebras.
(4) for all \(x, y, z \in R \) one has \((xy, z) = (y, x*z) \);
(5) for all \(x \in R \) one has \(\|x^*\| = \|x\| \);
(6) \(xx^* \neq 0 \) for \(x \neq 0 \).

An example of a Hilbert algebra is the set of Hilbert-Schmidt operators \(HS(I) \) that one can identify with the set of all matrices \((a_{\alpha\beta}) \), where \(\alpha, \beta \) belong to a fixed set of indices \(I \), satisfying the condition \(\sum_I |a_{\alpha\beta}|^2 < \infty \).

Theorem 1.2 ([N] p. 331). Every Hilbert algebra is the direct orthogonal sum of its closed minimal two-sided ideals, which are simple Hilbert algebras.

Every simple Hilbert algebra is isomorphic to some algebra \(HS(I) \) of Hilbert-Schmidt operators.

Definition 1.3 ([L] p. 101). An idempotent \(e \in R \) is said to be irreducible if it cannot be expressed as a sum \(e = e_1 + e_2 \) with \(e_1, e_2 \) idempotents that annihilate each other: \(e_1e_2 = e_2e_1 = 0 \).

Lemma 1.4 ([L] p. 102). A subset \(I \) of a Hilbert algebra \(R \) is a minimal left (right) ideal if and only if it is of the form \(I = R \cdot e \) \((I = e \cdot R)\), where \(e \) is an irreducible selfadjoint idempotent. Moreover \(e \cdot R \cdot e \) is isomorphic to the set of complex numbers and \(R \) is spanned by its minimal left ideals.

Observe that any minimal left ideal is closed, since it is of the form \(R \cdot e \).

Corollary 1.5. If \(R \) is a commutative Hilbert algebra, then any minimal left (or right) ideal is one-dimensional.

1.2. **An algebra structure on** \(L^2(X) \). Let \(G = SL(n, \mathbb{R}) \), \(H = GL(n-1, \mathbb{R}) \), \(K = SO(n) \) and \(M = SO(n-1) \). We consider \(H \) as a subgroup of \(G \), consisting of the matrices of the form \(\begin{pmatrix} (\det h)^{-1} & 0 \\ 0 & h \end{pmatrix} \) with \(h \in GL(n-1, \mathbb{R}) \).

Let \(P^- \) be the parabolic subgroup of \(G \) consisting of \(1 \times (n-1) \) lower block matrices \(P = \begin{pmatrix} a \\ c \end{pmatrix} \), \(a \in \mathbb{R}^* \), \(c \in \mathbb{R}^{n-1} \) and \(A \in GL(n-1, \mathbb{R}) \) such that \(a \cdot \det A = 1 \).

Similarly, let \(P^+ \) be the group of upper block matrices \(P = \begin{pmatrix} a \\ b \end{pmatrix} \), \(a \in \mathbb{R}^* \), \(b \in \mathbb{R}^{n-1} \) and \(A \in GL(n-1, \mathbb{R}) \) such that \(a \cdot \det A = 1 \).

The group \(G \) acts on the sphere \(S = \{ s \in \mathbb{R}^n, \|s\|^2 = 1 \} \) and acts transitively on the set \(\tilde{S} = S/\sim \), where \(s \sim s' \) if and only if \(s = \pm s' \), by \(g.s = \frac{g(s)}{\|g(s)\|} \), where \(g(s) \) denotes the linear action of \(G \) on \(\mathbb{R}^n \). Clearly the stabilizer of the equivalence class of the first basis vector \(e_1 \) is the group \(P^+ \); thus \(\tilde{S} \simeq G/P^+ \). If \(ds \) is the usual normalized surface measure on \(S \), then \(d(g.s) = \|g(s)\|^{-n} ds \).

For \(\mu \in \mathbb{C} \), define the character \(\omega_\mu \) of \(P^\pm \) by \(\omega_\mu(P) = |\mu|^\mu \). Consider the induced representations \(\pi^+_\mu = \text{Ind}_{P^-}^{G} \omega_{\pi^-} \mu \).

Both \(\pi^+_\mu \) and \(\pi^-_\mu \) can be realized on \(C^\infty(\tilde{S}) \), the space of even smooth functions \(\phi \) on \(S \). This action is given by
\[
\pi^+_\mu(g)\phi(s) = \phi(g^{-1}.s) \cdot \|g^{-1}(s)\|^\mu.
\]
Let \(\theta \) be the Cartan involution of \(G \) given by \(\theta(g) = {}^tg^{-1} \). Then
\[
\pi^-_\mu(g)\phi(s) = \phi(\theta(g^{-1}).s) \cdot \|\theta(g^{-1})(s)\|^\mu.
\]
Let $(\ ,\)$ denote the usual inner product on $L^2(S): (\phi, \psi) = \int_S \phi(s)\overline{\psi}(s)ds$. Then this sesquilinear form is invariant with respect to the pairs of representations $(\pi^+, \pi^-_{-\mu})$ and $(\pi^-, \pi^+_{-\mu})$. Therefore the representations π^\pm are unitary for $\text{Re} \mu = -\frac{n}{2}$. Notice that according to [DM2] these representations are irreducible for all nonintegral μ.

The group G acts also on $\bar{S} \times \bar{S}$ by

$$g(u, v) = (g(u), \theta(g)v).$$

This action is not transitive: the orbit $(\bar{S} \times \bar{S})^o = G.(\bar{c_1}, \bar{c_1}) = \{(u, v) : \langle u, v \rangle \neq 0\}/\sim$ is dense (here $\langle \ , \ \rangle$ denotes the canonical inner product on \mathbb{R}^n) and is of co-measure zero. Moreover, one has a G-equivariant diffeomorphism $(\bar{S} \times \bar{S})^o \simeq X$.

The map $f \mapsto f(u, v)|\langle u, v \rangle|^{-\frac{n}{2} + i\sigma}$, with $\sigma \in \mathbb{R}$ is a unitary G-isomorphism between $L^2(X)$ and $\pi^+_\frac{n}{2} + i\sigma \bar{\otimes}_2 \pi^-_{\frac{n}{2} + i\sigma}$ acting on $L^2(\bar{S} \times \bar{S})$. The latter space is provided with the usual inner product.

Define the operator A_μ on $C^\infty(\bar{S})$ by the formula

$$A_\mu \phi(s) = \int_S |\langle s, t \rangle|^{-\mu-n} \phi(t)dt.$$

This integral converges absolutely for $\text{Re} \mu < -1$ and can be analytically extended to the whole complex plane as a meromorphic function of μ. It is easily checked that A_μ is an intertwining operator, that is, $A_\mu \pi^\pm(g) = \pi^\pm_{-\mu-n}(g)A_\mu$.

The operator $A_{-\mu-n} \circ A_\mu$ intertwines the representation $\pi^\pm_{-\mu}$ with itself and is therefore a scalar $c(\mu)$Id depending only on μ. It can be computed using K-types.

Let $e(\mu) = \int_S |\langle s, t \rangle|^{-\mu-n}dt$. Then $c(\mu) = e(\mu)e(-\mu - n)$. But on the other hand, $c(\mu) = \frac{\Gamma\left(\frac{n}{2}\right)}{\pi} \frac{\Gamma\left(\frac{-n/2+i\sigma+1}{2}\right)}{\Gamma\left(\frac{n/2+i\sigma}{2}\right)} \frac{\Gamma\left(\frac{-n/2-i\sigma+1}{2}\right)}{\Gamma\left(\frac{-n/2-i\sigma}{2}\right)}$,

and moreover $A_{-\frac{n}{2}+i\sigma} \circ A^*_{-\frac{n}{2}+i\sigma} = c(\sigma)$Id, so that the operator $d(\sigma)A_{-\frac{n}{2}+i\sigma}$, where

$$d(\sigma) = \frac{\sqrt{\pi}}{\Gamma\left(\frac{n/2+i\sigma}{2}\right)} \Gamma\left(\frac{-n/2-i\sigma+1}{2}\right)$$

is a unitary intertwiner between $\pi^-_{\frac{n}{2} + i\sigma}$ and $\pi^+_{\frac{n}{2} - i\sigma}$.

We thus get a $\pi^+_{\frac{n}{2} + i\sigma} \bar{\otimes}_2 \pi^-_{\frac{n}{2} + i\sigma}$ invariant map from $L^2(X)$ onto $L^2(\bar{S} \times \bar{S})$ given by

$$f \mapsto d(\sigma) \int_S f(u, v)|\langle u, v \rangle|^{-\frac{n}{2} + i\sigma} |\langle v, w \rangle|^{-\frac{n}{2} - i\sigma} dw =: (T_\sigma f)(u, v), \forall \sigma \neq 0.$$

This integral does not converge absolutely; it must be considered as obtained by analytic continuation.

Definition 1.6. A symbolic calculus on X is a linear map $Op_\sigma : L^2(X) \to \mathcal{L}(L^2(\bar{S}))$ such that for every $f \in L^2(X)$ the function $(T_\sigma f)(u, v)$ is the kernel of the Hilbert-Schmidt operator $Op_\sigma(f)$ acting on $L^2(\bar{S})$.

Definition 1.7. The product $\#_\sigma$ on $L^2(X)$ is defined by

$$Op_\sigma(f \#_\sigma g) = Op_\sigma(f) \circ Op_\sigma(g), \forall f, g \in L^2(X).$$
We thus have

- The product \ast_σ is associative.
- $\|f \ast_\sigma g\|_2 \leq \|f\|_2 \cdot \|g\|_2$, for all $f, g \in L^2(X)$.
- $Op_\sigma(L_x f) = \pi^\pm_{\frac{\sigma}{2} + i\sigma}(x) Op_\sigma(f) \pi^\pm_{\frac{\sigma}{2} + i\sigma}(x^{-1})$, so $L_x(f \ast_\sigma g) = (L_x f) \ast_\sigma (L_x g)$, for all $x \in G$, where L_x denotes the left translation by $x \in G$ on $L^2(X)$.

This noncommutative product can be described explicitly:

\begin{equation}
(f \ast_\sigma g)(u, v) = d(\sigma) \int_S \int_S f(u, x) g(y, y) \|u, y, x, v\|^{-\frac{1}{2} + i\sigma} d\mu(x, y),
\end{equation}

where $d\mu(x, y) = |\langle x, y \rangle|^{-n} dx dy$ is a G-invariant measure on $\tilde{S} \times \tilde{S}$ for the G-action $[\Pi]$, and $[u, y, x, v] = \langle \langle u, x \rangle \langle y, v \rangle \rangle$.

On the space $L^2(X)$ there exists an (family of) involution $f \mapsto f^*$ given by: $Op_\sigma(f^*) =: Op_\sigma(f)^*$. Notice that the correspondance $f \mapsto Op_\sigma(f)^*$ is what one calls in pseudo-differential analysis “anti-standard symbolic calculus”. The link between symbols of standard and anti-standard calculus in the setting of the para-Hermitian symmetric space X has been made explicit in [PU, Corollary 1.4]; see also Section 3.

Obviously we have $(f \ast_\sigma g)^* = g^* \ast_\sigma f^*$ and with the above product and involution, the Hilbert space $L^2(X)$ becomes a Hilbert algebra.

2. **The structure of the subalgebra of K-invariant functions in $L^2(X)$**

Let \mathcal{A} be the subspace of all K-invariant functions in $L^2(X)$.

Theorem 2.1. The subset \mathcal{A} is a closed subalgebra of $L^2(X)$ with respect to the product \ast_σ.

This statement clearly follows from the covariance of the symbolic calculus Op_σ, namely: $L_x(f \ast_\sigma g) = (L_x f) \ast_\sigma (L_x g)$, for all $x \in G, f, g \in L^2(X)$.

Theorem 2.2. Let $n > 2$. Then the subalgebra \mathcal{A} is commutative.

Proof. For a function $f \in L^2(X)$ we set $\tilde{f}(u, v) = f(v, u)$. The map $f \mapsto \tilde{f}$ is a linear involution. Indeed,

\[(f \ast_\sigma g)(u, v) = d(\sigma) \int_S \int_S \tilde{f}(x, u) \tilde{g}(y, y) \|u, y, x, v\|^{-\frac{1}{2} + i\sigma} d\mu(x, y).
\]

Permuting x and y and u and v respectively, we get

\[(f \ast_\sigma g)(v, u) = d(\sigma) \int_S \int_S \tilde{g}(u, x) \tilde{f}(y, y) \|v, y, x, u\|^{-\frac{1}{2} + i\sigma} d\mu(x, y).
\]

But $\|v, x, y, u\| = \|u, y, x, v\|$; therefore $(f \ast_\sigma g) = \tilde{g} \ast_\sigma \tilde{f}$.

On the other hand, given a couple $(u, v) \in \tilde{S} \times \tilde{S}$ there exists an element $k \in K$ such that $k.(u, v) = (v, u)$. Geometrically k can be seen as a rotation of angle $\pi [2\pi]$ around the axis defined by the bisectrix of vectors u and v in the plane they generate. Of course, such a k exists for an arbitrary couple (u, v) only if $n > 2$.

Hence for every $f \in \mathcal{A}$ we have $f = \tilde{f}$ and therefore $f \ast_\sigma g = g \ast_\sigma f$, for $f, g \in \mathcal{A}$. \qed
3. Irreducible Selfadjoint Idempotents of \mathcal{A}

We begin with a reduction theorem for the multiplication and involution in $L^2(X)$.

As usual, we shall identify $L^2(X)$ with $L^2(\widetilde{S} \times \widetilde{S}; |\langle x, y \rangle|^{-n} dxdy)$. If $\phi \in L^2(X)$ we shall write $\phi(u, v) = |\langle u, v \rangle|^{\nu/2-i\sigma} \phi_o(u, v)$. Then $\phi_o \in L^2(\widetilde{S} \times \widetilde{S}; dsdt) = L^2(\widetilde{S} \times \widetilde{S})$, and therefore the map $\phi \rightarrow \phi_o$ is an isomorphism.

Theorem 3.1. Under the isomorphism $\phi \rightarrow \phi_o$ the product $\#_\sigma$ translates into

$$\phi_o \#_\sigma \psi_o(u, v) = d(\sigma) \int_S \int_S \phi_o(u, x) \psi_o(y, v) |\langle x, y \rangle|^{-\nu/2-i\sigma} dxdy$$

and the involution becomes:

$$\tilde{\phi}_o(u, v) = d(\sigma)^2 \int_S \int_S \tilde{\phi}_o(x, y) (|\langle x, v \rangle|/|\langle u, y \rangle|)^{-\nu/2+i\sigma} dxdy.$$

The proof is straightforward. So we have translated the algebra structure of $L^2(X)$ to $L^2(\widetilde{S} \times \widetilde{S})$.

Let ϕ be an irreducible selfadjoint idempotent in \mathcal{A}. We shall give an explicit formula for the ϕ_o-component of ϕ.

Consider the decomposition of the space $L^2(\widetilde{S}) = \bigoplus_{\ell \in 2\mathbb{N}} V_\ell$, where V_ℓ is the space of harmonic polynomials on \mathbb{R}^n, homogeneous of even degree ℓ.

Then the space $L^2(\widetilde{S} \times \widetilde{S})$ decomposes into a direct sum of tensor products $\bigoplus_{\ell, m \in 2\mathbb{N}} V_\ell \otimes V_m$ and consequently

$$L^2_K(\widetilde{S} \times \widetilde{S}) = \bigoplus_{\ell \in 2\mathbb{N}} (V_\ell \otimes \tilde{V}_\ell)^K,$$

where the sub(superscript) K means: “the K-invariants in”.

Let $\dim V_\ell = d$ and f_1, \ldots, f_d be an orthonormal basis of V_ℓ. Then the function $\theta_\ell(u, v) = \sum_{i,j} f_i(u) f_j(v)$, that is, the reproducing kernel of V_ℓ, is, up to a constant, the K-invariant element of $V_\ell \otimes \tilde{V}_\ell$.

Theorem 3.2. Let $\phi(u, v) = |\langle u, v \rangle|^{\nu/2-i\sigma} \phi_o(u, v)$ be an irreducible selfadjoint idempotent in \mathcal{A}. Then there exist complex numbers $c(\sigma, \ell)$ such that for any $\ell \in 2\mathbb{N}$ one has

$$\phi_o(u, v) = c(\sigma, \ell) \theta_\ell(u, v).$$

For different ℓ and ℓ' the idempotents annihilate each other. Moreover they span \mathcal{A}.

Proof. Firstly we shall show that θ_ℓ satisfies the condition

$$\theta_\ell \#_\sigma \theta_\ell = a(\sigma, \ell) \theta_\ell$$

for some constant $a(\sigma, \ell)$. Indeed,

$$d(\sigma) \int_S \int_S \theta_\ell(u, x) \theta_\ell(y, v) |\langle x, y \rangle|^{-\frac{\nu}{2}+i\sigma} dxdy$$

$$= d(\sigma) e(\sigma) \int_S \theta_\ell(u, y) \theta_\ell(y, v) dy = d(\sigma) e(\sigma) \theta_\ell(u, v)$$

by the intertwining relation (apply $A_{-\frac{\nu}{2}+i\sigma}$ to $\theta_\ell(., x)$):

$$\int_S \theta_\ell(u, x) |\langle x, y \rangle|^{-\frac{\nu}{2}+i\sigma} dx = e(\sigma) \theta_\ell(u, y)$$
where
\[
e_\ell(\sigma) = \int_S \frac{\theta_\ell(e_1, x)}{\theta_\ell(e_1, e_1)} |x_1|^{-\frac{n}{2} - i\sigma} \, dx.
\]

Observe that \(\frac{\theta_\ell(e_1, x)}{\theta_\ell(e_1, e_1)}\) is a spherical function on \(\mathcal{S}\) with respect to \(M\) of the form \(a_\ell C_{\ell}^{n-2}(|x_1|)\) where \(C_{\ell}^{n-2}(u)\) is a Gegenbauer polynomial and
\[
a_\ell^{-1} = C_{\ell}^{n-2}(1) = 2\ell \Gamma\left(\frac{n-2}{2} + \ell\right) \Gamma\left(\frac{n-2}{2}\right)\ell!.
\]
See for instance [VI Chapter IX, §3]. Notice that \(\theta_\ell(e_1, e_1) = \dim V_\ell = \frac{(n+\ell-1)!}{(n-1)!\ell!} \neq 0\).

The integral defining \(e_\ell(\sigma)\) does not converge absolutely, but has to be considered as the meromorphic extension of an analytic function. Poles only occur in half-integer points on the real axis. So we have to restrict (and we do) to \(\sigma \neq 0\).

So we have \(\theta_\ell\#_\sigma \theta_\ell = d(\sigma) e_\ell(\sigma) \theta_\ell\) and hence \(\varphi_\ell = [d(\sigma) e_\ell(\sigma)]^{-1} \theta_\ell\) is the \(\sigma\text{-}
\integrated\) component of an idempotent in \(\mathcal{A}\). Furthermore \(\theta_\ell\#_\sigma \theta_{\ell'} = 0\) if \(\ell \neq \ell'\). Clearly \(\varphi_\ell\) is selfadjoint, since \(|d(\sigma)|^{-2} = |e_\ell(\sigma)|^2\), being equal to the constant \(c(\sigma)\) from Section 1.

So the \(\varphi_\ell\) are mutually orthogonal idempotents in the algebra \(L^2_\mathcal{F}(\mathcal{S} \times \mathcal{S}; dsdt)\) and span this space. The theorem now follows easily.

Remark. The constant \(e_\ell(\sigma)\) can of course be computed. Applying e.g. [G] Section 7.31, we get, by meromorphic continuation:

\[
e_\ell(\sigma) = a_\ell \int_S C_{\ell}^{n-2}(|x_1|) |x_1|^{-\frac{n}{2} - i\sigma} \, dx
\]

\[
= 2 a_\ell \frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-2}{2}\right)} \int_0^1 u^{-\frac{n}{2} - i\sigma} (1 - u^2)^{\frac{n-2}{2}} C_{\ell}^{n-2}(u) \, du
\]

\[
= 2^{-2\ell} \frac{\Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi}} \frac{\Gamma(n - 2 + \ell)}{\Gamma(n - 2)} \frac{\Gamma\left(\frac{n-2}{2}\right)}{\Gamma\left(\frac{n-2}{2} + \ell\right)} \frac{\Gamma\left(\frac{n}{2} - i\sigma + 1\right)}{\Gamma\left(\frac{n}{2} - i\sigma + \ell + 1\right)} \frac{\Gamma\left(\frac{n}{2} - i\sigma + \frac{\ell+1}{2}\right)}{\Gamma\left(\frac{n}{2} - i\sigma + \frac{\ell+1}{2}\right)}.
\]

4. **The structure of the Hilbert algebra \(L^2(\mathcal{X})\)**

We now turn to the full algebra \(L^2(\mathcal{X})\). We again reduce the computations to \(L^2(\mathcal{S} \times \mathcal{S})\). In a similar way as for \(\mathcal{A}\) we get:

Lemma 4.1. If \(\phi_o \in V_\ell \otimes V_{m'}, \psi_o \in V_{\ell'} \otimes V_{m'\ell'},\) then

\[
\phi_o \#_\sigma \psi_o = \begin{cases} 0 & \text{if } m \neq \ell', \\ \text{in } V_\ell \otimes V_{m'} & \text{if } m = \ell'.
\end{cases}
\]

More precisely we have the following result. Let \((f_j), (g_j), (h_i)\) be orthonormal bases of \(V_\ell, V_m\) and \(V_{m'\ell'}\) respectively, and \(\phi_o(u, v) = f_j(u)\overline{g_j}(v), \psi_o(u, v) = g_j'(u)\overline{h_i}(v)\). Then

\[
\phi_o \#_\sigma \psi_o = \begin{cases} 0 & \text{if } j \neq j', \\ d(\sigma) e_m(\sigma) f_j(u)\overline{k_i}(v) & \text{if } j = j'.
\end{cases}
\]
The proof is again straightforward and uses the intertwining relation:
\[\int_{S} |\langle x, y \rangle|^{-n/2-\sigma} g_{j}(y)dy = e_{m}(\sigma) g_{j}(x). \]

Theorem 4.2. The irreducible selfadjoint idempotents of \(L^{2}(\tilde{S} \times \tilde{S}) \) are given by
\[e_{f}^{\ell}(u, v) = \left\{ d(\sigma) e_{\ell}(\sigma) \right\}^{-1} \cdot f(u) \overline{f}(v) \]
with \(f \in V_{\ell}, \|f\|_{L^{2}(\tilde{S})} = 1 \) and \(\ell \) even. The left ideal generated by \(e_{f}^{\ell} \) is equal to
\(L^{2}(\tilde{S}) \otimes \overline{f} \).

The proof reduces to the application of Lemma (4.1).

Remarks.
1. The minimal right ideals are obtained in a similar way.
2. The minimal two-sided ideal generated by \(L^{2}(\tilde{S} \times \tilde{S}) \cdot e_{f}^{\ell} \) is the full algebra \(L^{2}(\tilde{S} \times \tilde{S}) \).
3. The closure of \(\bigoplus_{\ell \in 2 \mathbb{N}} V_{\ell} \otimes \overline{V}_{\ell} \) is an \(H^{*} \)-subalgebra of \(L^{2}(\tilde{S} \times \tilde{S}) \). The minimal left ideals are here \(V_{\ell} \otimes \overline{f} \) \((f \in V_{\ell}, \|f\|_{L^{2}(\tilde{S})} = 1)\); they are generated by the \(e_{f}^{\ell} \) as above. The minimal two-sided ideal generated by \(V_{\ell} \otimes \overline{f} \) is equal to \(V_{\ell} \otimes \overline{V}_{\ell} \).

5. **The case of a general para-Hermitian space**

It is not necessary to assume rank \(X = 1 \) in order to show that \(\mathcal{A} \) is commutative. Theorem 3.2 is also valid mutatis mutandis in the general case since \((K, K \cap H) \) is a Gelfand pair, and it clearly implies the commutativity of \(\mathcal{A} \).

We shall return to the general construction of the product and the involution in another paper, but we should already mention that the case of a para-Hermitian symmetric space of Hermitian type was studied in [DP]. Results obtained in this direction gave a new interpretation of higher order Rankin-Cohen brackets in terms of branching laws for tensor products of holomorphic discrete series representations.

References

Mathematisch Instituut, Universiteit Leiden, P.O. Box 9512, NL-2300 RA Leiden, The Netherlands

E-mail address: dijk@math.leidenuniv.nl

Laboratoire de Mathématiques, UMR CNRS 6056, Université de Reims, Campus Moulin de la Housse BP 1039, F-51687, Reims, France

E-mail address: pevzner@univ-reims.fr