
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 136, Number 6, June 2008, Pages 2183–2191
S 0002-9939(08)09225-3
Article electronically published on February 19, 2008

COHOMOLOGY
IN ONE-DIMENSIONAL SUBSTITUTION TILING SPACES

MARCY BARGE AND BEVERLY DIAMOND

(Communicated by Jane M. Hawkins)

Abstract. Anderson and Putnam showed that the cohomology of a substi-
tution tiling space may be computed by collaring tiles to obtain a substitution
which “forces its border.” One can then represent the tiling space as an in-
verse limit of an inflation and substitution map on a cellular complex formed
from the collared tiles; the cohomology of the tiling space is computed as the
direct limit of the homomorphism induced by inflation and substitution on the
cohomology of the complex. For one-dimensional substitution tiling spaces,
we describe a modification of the Anderson-Putnam complex on collared tiles
that allows for easier computation and provides a means of identifying certain
special features of the tiling space with particular elements of the cohomology.

1. Introduction

The investigation of the topology of substitution tiling spaces, in particular, the
study of the cohomology of the space, is often aided by representing the tiling space
as the inverse limit of an inflation and substitution map on the cellular Anderson-
Putnam complex ([AP]). If the substitution forces its border, the complex can be
formed using the given tiles as cells, and adding identifications indicating allowed
transitions; the cohomology of the tiling space is computed as the direct limit of
the homeomorphism induced by inflation and substitution on the cohomology of
the complex. If the substitution does not force its border, then the inverse limit
constructed in this way may be a nontrivial quotient of the tiling space rather than
the tiling space itself; certain arc components may be glued together, and others
pinched at points, in some cases changing the cohomology. In this case, the process
of collaring provides a larger set of tiles and an induced substitution which does
force its border. The inverse limit space of the complex formed from the larger
set of tiles and associated map is homeomorphic to the tiling space of the original
substitution.

In many situations, full collaring leads to a very large number of tiles, and the
process of determining the complex can be tedious and time-consuming. In ad-
dition, the cohomology of the tiling space is computed as the direct limit of the
transpose of a single (large) transition matrix, rather than in pieces that have some
topological interpretation. We indicate below, for one-dimensional substitution
tilings (that is, the tiles are subintervals of R), a process which achieves the same
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ultimate goal, that of representing the tiling space as an inverse limit on an asso-
ciated, simple complex, from which the cohomology can be computed in a fairly
straightforward way; the approach we present yields a specific, concrete, topologi-
cal interpretation of a piece of the cohomology and the relationship between that
contribution and the remaining cohomology (see Theorems 4 and 4′).

We made use of rewriting a one-dimensional substitution in [BD], based on ideas
introduced in [Dur], to modify an arbitrary one-dimensional substitution to obtain
a proper substitution that then automatically forces its border and has a tiling
space homeomorphic to that of the original substitution. The modified proper sub-
stitution typically has a smaller alphabet than that of the substitution produced by
collaring, hence the cohomology of the original tiling space may be more efficiently
computed by rewriting than by collaring. This process still has two drawbacks in
our view. First, there is no analog of rewriting in higher dimensions, while the
construction we describe below generalizes easily to higher dimensions. Second,
with rewriting, as with collaring, the cohomology is calculated as the direct limit
of a single matrix, disguising the contribution of certain topological features.

2. Notation and terminology

We introduce some notation and terminology.
Let A = {1, 2, . . . , card(A)} be a finite alphabet; A∗ will denote the collection of

finite nonempty words with letters in A. A substitution on A is a map ϕ : A → A∗;
ϕ extends naturally to ϕ : A∗ → A∗. The transition matrix Aϕ = A for ϕ is
A := (aij)i∈A,j∈A in which aij is the number of occurrences of i in the word ϕ(j).

The substitution ϕ is primitive if ϕn(i) contains j for all i, j ∈ A and sufficiently
large n. Equivalently, ϕ is primitive if and only if the matrix A is aperiodic, in which
case A has a simple eigenvalue λϕ larger in modulus than its remaining eigenvalues
called the Perron-Frobenius eigenvalue of A (and ϕ).

A word w is allowed for ϕ if and only if for each finite subword (i.e., factor) w′

of w, there are i ∈ A and n ∈ N such that w′ is a subword of ϕn(i); the language
of ϕ, Lϕ = L, is the set of finite allowed words for ϕ. Let Wϕ denote the set of
allowed bi-infinite words for ϕ. We identify the 0th coordinate in a bi-infinite word
w by either an indexing, as in w = . . . w−1w0w1 . . ., or by use of a decimal point
(or both). Let σ : Wϕ → Wϕ denote the shift map:

σ(. . . w−1.w0w1 . . .) := . . . w−1w0.w1 . . . .

The substitution ϕ : A → A∗ extends to ϕ : Wϕ → Wϕ where

ϕ(. . . w−1w0w1 . . .) := . . . ϕ(w−1) . ϕ(w0)ϕ(w1) . . . .

The word w is periodic for ϕ under inflation and substitution, or ϕ-periodic, if for
some m ∈ N,

ϕm(w) = . . . ϕm(w−1).ϕm(w0)ϕm(w1) . . . = . . . w−1.w0w1 . . . .

Each primitive substitution ϕ has at least one allowed ϕ-periodic bi-infinite word
which is necessarily uniformly recurrent under the shift. A substitution ϕ with
precisely one periodic, hence fixed, bi-infinite word is called proper; ϕ is proper if
and only if there are b, e ∈ A such that for all sufficiently large k and all i ∈ A,
ϕk(i) = b . . . e.

A primitive substitution ϕ is aperiodic if at least one (equivalently, each) ϕ-
periodic bi-infinite word is not periodic under the natural shift map, in which case
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(Wϕ, σ) is an infinite minimal dynamical system. If ϕ is aperiodic, then the map
ϕ : Wϕ → Wϕ is one-to-one ([Mo]). If ϕ is periodic (that is, primitive and not
aperiodic), then Wϕ is finite.

Given a primitive substitution ϕ : A → A∗ with card(A) = d ≥ 2, let ωL :=
(ω1, . . . , ωd) be a positive left eigenvector for the Perron-Frobenius eigenvalue, λ,
of A. The intervals Pi = [0, ωi], i = 1, . . . , d, are called prototiles for ϕ (consider Pi

to be distinct from Pj for i �= j even if ωi = ωj). A tiling T of R by the prototiles
for ϕ is a collection T = {Ti}∞i=−∞ of tiles Ti for which

⋃∞
i=−∞ Ti = R, each Ti is

a translate of some Pj (in which case we say Ti is of type j), and Ti ∩ Ti+1 is a
singleton for each i. Generally we assume that the indexing is such that 0 ∈ T0 \T1.

If ϕ(i) = i1i2 . . . ik(i), then λωi =
∑k(i)

j=1 ωij
. Thus |λPi| =

∑k(i)
j=1 |Pij

|, and λPi

is tiled by {Tj}k(i)
j=1, where Tj = Pij

+
∑j−1

k=1 ωik
. This process is called inflation

and substitution and extends to a map Φ taking a tiling T = {Ti}∞i=−∞ of R by
prototiles to a new tiling, Φ(T ), of R by prototiles defined by inflating, substituting,
and suitably translating each Ti. More precisely, for w = w1 . . . wn ∈ A∗, define

Pw + t = {Pw1 + t, Pw2 + t + |Pw1 |, . . . , Pwn
+ t + Σi<n|Pwi

|}.
Then Φ(Pi + t) = Pϕ(i) + λt and Φ({Pki

+ ti}i∈Z) =
⋃

i∈Z
(Pϕ(ki) + λti).

There is a natural topology on the collection Σϕ of all tilings of R by prototiles
({Ti}∞i=−∞ and {T ′

i}∞i=−∞ are “close” if there is an ε near 0 so that {Ti}∞i=−∞ and
{T ′

i + ε}∞i=−∞ are identical in a large neighborhood of 0 (see [AP] for details)).
The space Σϕ is compact and metrizable with this topology and Φ : Σϕ → Σϕ is
continuous. Given T = {Ti}∞i=−∞ ∈ Σϕ, let w(T ) = . . . w−1w0w1 . . . denote the
bi-infinite word with wi = j if and only if Ti is of type j. The tiling space associated
with ϕ, Tϕ, is defined as

Tϕ = {T : w(T ) is allowed for ϕ}.
There is a natural flow (translation) on Σϕ defined by ({Ti}∞i=−∞, t) �→

{Ti − t}∞i=−∞. If ϕ is primitive and aperiodic, Φ : Tϕ → Tϕ is a homeomorphism
(this relies on the notion of recognizability or invertibilty for such substitutions; see
[Mo] and [So]). Each T ∈ Tϕ is uniformly recurrent under the flow and has dense
orbit (i.e., the flow is minimal on Tϕ). It follows that Tϕ is a continuum.

Recall that a composant of a point x in a topological space X is the union
of the proper compact connected subsets of X containing x. If ϕ is a primitive
substitution, composants and arc components in Tϕ are identical; in this case we
use the terms interchangeably. For any substitution ϕ, the arc components of the
tiling space Tϕ coincide with the orbits of the natural flow (translation) on Tϕ.

Tilings T, T ′ ∈ Tϕ are forward asymptotic if limt→∞ dist(T − t, T ′ − t) = 0.
Equivalently, T = {Ti}∞i=−∞, T ′ = {T ′

i}∞i=−∞ are forward asymptotic if there are
N, M ∈ Z so that TN+k = T ′

M+k for all k ≥ 0. Composants are forward asymp-
totic if they contain forward asymptotic tilings. Backward asymptotic tilings and
composants are defined similarly.

If f : X → X is a map of a compact connected metric space X, then the inverse
limit space with single bonding map f is the space

lim←− f = {(x0, x1, . . .) : f(xi) = xi−1 for i = 1, 2, . . .}
with metric

d(x, y) =
∑
i≥0

d(xi, yi)
2i

;
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f̂ : lim←− f → lim←− f will denote the natural (shift) homeomorphism

f̂(x0, x1, . . .) = (f(x0), x0, x1, . . .).

3. The modified complex and its cohomology

Given a primitive, aperiodic substitution ϕ on d letters, the complex K = Kϕ

will consist of a collection of edges representing the letters of A, another collection
of edges representing allowed transitions between letters, and certain identifications.

As above, ωL = (ω1, . . . , ωd) is a left eigenvector for the Perron-Frobenius eigen-
value λ for ϕ. Define 0 < ε = min{ωa

2λ }a∈A. For a ∈ A, let

ea := [ε, ωa − ε] × {a},
and for ab ∈ L, let

eab := [−ε, ε] × {ab}.
Define

K := [(
⋃

a∈A
ea) ∪ (

⋃
ab∈L

eab)]/ ∼,

where
(ωa − ε, a) ∼ (−ε, ab)

and
(ε, b) ∼ (ε, ab)

for all a, b ∈ A, and let
S :=

⋃
ab∈L

eab/ ∼ .

Loosely, the complex K is a wedge of d circles with the branch point “blown up”
to S; K/S is homeomorphic to the wedge of d circles.

Example 1. The Fibonacci substitution: If ϕ is the Fibonacci substitution (ϕ(1) =
12, ϕ(2) = 1), then all transitions except 22 are allowed, and Kϕ is (topologically
and not to scale) shown below.

�
�

�
�

�
�

�
�

e11

e21

e2e1

e12

�
�

�

�
�

�
In Example 1, collaring leads to a topologically identical complex. In the general

case, the complex K constructed above is a quotient of the complex on collared tiles,
usually nontrivial.

Given a tiling T = {Tn}n∈Z ∈ Tϕ, let t ∈ R and a, b, c ∈ A be such that
0 ∈ T0 = [0, ωa] − t, T−1 = [0, ωb] − t − ωb, and T1 = [0, ωc] − t + ωa. Define a map
p : Tϕ → K as follows:

p(T ) =

⎧⎨
⎩

[(t, a)] if ε ≤ t ≤ ωa − ε,
[(t, ba)] if 0 ≤ t ≤ ε,
[(t − ωa, ac)] if ωa − ε ≤ t ≤ ωa.

The map p is a continuous surjection, and there is a unique map f : K → K
such that f ◦ p = p ◦ Φ, where Φ : Tϕ → Tϕ is the inflation and substitution
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homeomorphism. It is easy to verify that if ϕ(a) = a1a2 . . . ak, then f(ea) ⊂
ea1 ∪ ea1a2 ∪ ea2 ∪ . . . ∪ eak−1 ∪ eak−1ak

∪ eak
, and if ϕ(a.b) = . . . c.d . . ., then

f(eab) ⊆ ec ∪ ecd ∪ ed.

Lemma 2. lim←− f � Tϕ.

Proof: The commuting diagram

p p

Φ

f
K K

Tϕ Tϕ

� �
�

�

induces a map p̂ : Tϕ → lim←− f given by p̂(T ) = (p(T ), p(Φ−1(T )), . . .).
Let V := {(ε, a)}a∈A ∪ {(ωa − ε, a)}a∈A, and choose x = (x0, x1, . . .) ∈ lim←− f .

Suppose that for some i ∈ N, xi ∈ V . The choice of ε implies that xi−1 ∈ eb \V for
some b ∈ A. That is, if T ∈ p̂−1(x), then the 0th tile of Φ1−i(T ), and the position
of the origin within the interior of this tile, are determined, as are segments of T
of approximate length λiωb about the origin. It follows that T ∈ p̂−1(x) is totally
determined if xi ∈ V for arbitrarily large i.

If xi /∈ V for arbitrarily large i, then for sufficiently large n ∈ N, either xn ∈ eab

for some a, b ∈ A or xn ∈ eb \ V for some b ∈ A. In the first case, the (−1)st and
0th tiles of Φ1−n(T ), and the position of the origin within the interior of the union
of these edges, are determined. In both cases, arguments identical to those above
imply that arbitrarily large segments of T about the origin are determined, thus T
is totally determined, and p̂ is one-to-one. As p is onto, so is p̂. �

There are two essential ways in which the cohomology of the inverse limit of the
natural map on the wedge of circles, that is, lim−→At

ϕ, may need to be modified to
obtain the cohomology of the tiling space Tϕ.

First, if Tϕ contains one or more cycles of asymptotic composants associated
with a cycle of ϕ-periodic words of the form . . . a1.a2 . . ., . . . a3.a2 . . ., . . . a3.a4 . . .,
. . ., . . . a1.a2n . . ., then those composants are “glued together” in the inverse limit
on the wedge of circles to form n-ods (possibly overlapping). The modified collaring
described above, in particular, the construction of the subcomplex S, “pulls apart”
these cycles. The cohomology associated with the unglued cycles in Tϕ is computed
via Ȟ1(S) and must be added to lim−→At.

Second, there may be “extra” cohomology appearing in lim−→At that does not
appear in Tϕ that we identify below.

We find it easier to compute the cohomology of Tϕ by working with a map g
defined on K that is homotopic to f and leaves the transition edges invariant. We
define g as follows.

First, let δ = min{ωa

3 }a∈A. For a ∈ A, define

ha(x) =

⎧⎨
⎩

ε if ε ≤ x ≤ δ,
ε + ωa−2ε

ωa−2δ (x − δ) if δ ≤ x ≤ ωa − δ,

ωa − ε if ωa − δ ≤ x ≤ ωa − ε.

That is, ha linearly maps the interval [δ, ωa − δ] over [ε, ωa − ε] and collapses the
intervals [ε, δ] and [ωa − δ, ωa − ε] to {ε} and {λa − ε}, respectively.
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Let h : K → K be defined as:

h(x, w) =
{

(ha(x), w) if x ∈ ea, for a ∈ A,
(x, w) if x ∈ eab, for ab ∈ L.

Finally, g := h ◦ f . If ϕ(a.b) = . . . c.d . . ., then g(eab) = ecd, hence g(S) ⊆ S.
We show below that the “extra” piece of cohomology mentioned above may be

computed as follows. We find the eventual range ER of g|S , and the rank of the
group generated by the coboundaries of the components of ER. Each generator for
this group is an eigenvector associated with eigenvalue 1 for a power of g∗ acting
on H1(K, S), and the rank of the group indicates the number of copies of Z to be
quotiented out from lim−→At.

Whereas lim←− f � Tϕ, lim←− g is homeomorphic to a quotient of Tϕ in which asymp-
totic composants for ϕ associated with ϕ-periodic words, should there be any, are
glued in the direction of asymptoticity (each such pair of composants is associated
with a pair of ϕ-periodic words of the form . . . a.b . . ., . . . a.c . . ., thus with the edges
ea, eab and eac, with the last two periodic under g). However, in this case, unlike
the situation with the inverse limit space on the wedge of circles, gluing does not
extend all the way to the origins of the associated tilings, and the next result says
that this gluing does not change the cohomology of Tϕ.

Corollary 3. lim−→ g∗ � Ȟ(Tϕ).

Proof. Since f and g are homotopic, lim−→ g∗ = lim−→ f∗ � Ȟ(Tϕ). �

Denote the eventual range
⋂

n≥0 gn(S) of g|S by ER. Let k be the number of
connected components of ER and l the number of independent 1-cycles in ER; we
call l the asymptotic cycle rank of ϕ. (Note that if ϕ is proper, ER consists of a
single edge eab. If ϕ forces its border, then each component of ER is a single edge.)

Our main result is the following:

Theorem 4. Ȟ1(Tϕ) � Z
l ⊕ lim−→At/G, where G � Z

k−1.

Proof. There is an m ∈ N such that gm(C) = C for each component C of ER and
gm(S) ⊆ ER. Pick a point c from each component C of S, and let ĉ denote the
corresponding dual generator in H0(S). For each component C of ER, the element

vC =
∑

{ĉ′ : C ′ is a component of S, gm(C ′) ⊆ C}

is fixed by (g∗)m : H0(S) → H0(S). Furthermore, the eventual range of g∗ has
basis {vC : C a component of ER}, and the sum of these basis elements,

∑
vC ,

generates the range η of the augmentation map. Thus, choosing k − 1 of the
components, C1, . . . , Ck−1, of ER, the cosets {vC1 + η, . . . , vCk−1 + η} form a basis
for the eventual range of g∗ on the reduced cohomology H̃0(S) := H0(S)/η, and
each of these basis elements is an eigenvector for (g∗)m with eigenvalue 1.

It is clear that gm is homotopic to the identity on ER, so that lim−→ g∗ : H1(S) →
H1(S) � Z

l, where l is the asymptotic cycle rank of ϕ. To see how the 1-cycles
of ER contribute to the cohomology of Tϕ, consider the morphism of the exact
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sequence of the pair (K, S) induced by g : (K, S) → (K, S):

0 → H̃0(S) δ→ H1(K, S) → H1(K) → H1(S) → 0

0 → H̃0(S) δ→ H1(K, S) → H1(K) → H1(S) → 0
� � � �
g∗0 g∗1 g∗2 g∗3

Taking direct limits, we get an exact sequence

0 → G0

�δ→ G1 → G2 → G3 → 0

in which G1 � lim−→At, G2 := lim−→ g∗2 � Ȟ1(Tϕ), G3 := lim−→ g∗3 � Z
l, and G0 :=

lim−→ g∗0 � Z
k−1 as described above. The short exact sequence

0 → coker(�δ) → G2 → G3 → 0

splits to give Ȟ1(Tϕ) � coker(�δ) ⊕ Z
l.

Since H1(K) is free, so is coker(δ). In particular, the image under δ of a basis
of H̃0(S),

{δ(ĉ1 + η), . . . , δ(ĉk−1 + η)} ∪ {δ(ĉ + η) : C a component of S, C ∩ ER = ∅},
extends to a basis for H1(K, S) with respect to which (g∗1)m takes the form

(∗)

⎛
⎝ I 0 E2

E1 0 E3

0 0 A1

⎞
⎠ ,

where I is the (k − 1) × (k − 1) identity matrix, and the diagonal 0 matrix is
size j × j, where j := (# of components in S) − k. Note that in the basis {êa :
a ∈ A}, g∗1 is represented by At, the transpose of the transition matrix for ϕ.
Thus (∗) is unimodularly equivalent to (At

ϕ)m, and coker(�δ) � lim−→(g∗1)m, where
g∗1 : coker(δ) → coker(δ) is given by g∗1(x + δ(H̃0(S)) = g∗1(x) + δ(H̃0(S)). Thus
coker(�δ) � lim−→A1 and we have Ȟ1(Tϕ) � lim−→A1 ⊕ Z

l. �

Note: lim−→
(

I 0
E1 0

)
� Z

k−1. There are conditions that imply that lim−→At splits

as Z
k−1 ⊕ lim−→A1. For instance, if there is a matrix B so that

BA1 +
(

I 0
E1 0

)
= −

(
E1

E2

)
,

then lim−→At splits as described. We do not know if there is always such a splitting.
We rephrase the above discussion in a way that is more consistent with actual

computations (for instance, see Example 8) and allows for a more precise statement
of Theorem 4.

Let fi = (0 . . . 010 . . .)t be the ith standard basis vector for R
d and C1, . . . , Cp the

components of the complex S. For i = 1, . . . , p−1, let wi :=
∑

fj−
∑

fm, where the
first sum is over those j for which ej = [ε, λj − ε]×{j} terminates in Ci (i.e., (λj −
ε, j) ∈ Ci) and the second sum is over those m for which em originates in Ci (i.e.,
(ε, m) ∈ Ci). Then {w1, . . . , wp−1} extends to a basis {w1, . . . , wp−1, wp, . . . , wd} of
Z

d. Let P be the matrix with columns {w1, . . . , wp−1, wp, . . . , wd}. Then P−1AtP

has the form
(

E F
0 A1

)
in which A1 is size (d − p + 1) × (d − p + 1).
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Theorem 4′. Let ϕ be an aperiodic primitive substitution with asymptotic cycle
rank l and A1 as above. Then Ȟ1(Tϕ) � lim−→A1 ⊕ Z

l.

Corollary 5. Let ϕ, K, and S be as above. If H̃∗(S) � 0, then Ȟ1(Tϕ) � lim−→At
ϕ.

Example 6. The Fibonacci substitution: If ϕ is the Fibonacci substitution (ϕ(1) =
12, ϕ(2) = 1) (see Example 1), then S has a single connected component, and the
eventual range of g|S is the connected pair of edges ER = e11 ∪ e21, thus l = 0,
k = 1. By Theorem 4,

Ȟ1(Tϕ) � lim−→

[(
1 1
1 0

)t
]
� Z

2.

Example 7. The Morse-Thue substitution: Let ϕ denote the Morse-Thue substi-
tution (ϕ(1) = 12, ϕ(2) = 21).

�
�

�
�

�
�

�
�

�
�

�
�

e11 e22

e21

e2e1

e12

�
�

�

�

�
�

In this case, all transitions are allowed, and K is as above. The subcomplex
S has a single connected component and ER = S, so l = 1 = k. It follows from
Theorem 4 that

Ȟ1(Tϕ) � lim−→

(
1 1
1 1

)
⊕ Z � Z[1/2] ⊕ Z.

Example 8. Disconnected ER: Let ϕ be the substitution: ϕ(1) = 12341, ϕ(2) =
12, ϕ(3) = 3423, ϕ(4) = 42. The subcomplex S has two connected components
associated with the two sets of allowed transitions, {11, 41, 21, 23, 12, 42} and {34},
while ER consists of two connected components associated with {21, 11, 23} and
{34}. Then l = 0, k = 2. According to Theorem 4, Ȟ1(Tϕ) � lim−→At/G, where
G � Z and A is the transition matrix for ϕ.

The details of the proof of Theorem 4 allow us to determine Ȟ1(Tϕ) more pre-
cisely. First, H̃0(S) � Z has basis {ĉ1}, where ĉ1 is the dual generator of a vertex
c1 in e34. Then {δĉ1 = ê3− ê4} extends to the basis {ê3− ê4, ê1, ê2, ê3} of H1(K, S).
Since g∗1 has matrix At with respect to the basis {ê1, ê2, ê3, ê4, }, g∗1 has matrix⎛

⎜⎜⎝
1 0 −1 0
0 2 1 1
0 1 1 0
0 0 2 2

⎞
⎟⎟⎠

with respect to the basis {ê3 − ê4, ê1, ê2, ê3}. It follows that

Ȟ1(Tϕ) � lim−→A1 ⊕ Z
l � lim−→

⎛
⎝ 2 1 1

1 1 0
0 2 2

⎞
⎠ .
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