A sharp Rogers and Shephard inequality for the $p$-difference body of planar convex bodies
HTML articles powered by AMS MathViewer
- by Chiara Bianchini and Andrea Colesanti
- Proc. Amer. Math. Soc. 136 (2008), 2575-2582
- DOI: https://doi.org/10.1090/S0002-9939-08-09209-5
- Published electronically: March 10, 2008
- PDF | Request permission
Abstract:
We prove a sharp Rogers and Shephard type inequality for the $p$-difference body of a convex body in the two-dimensional case, for every $p\ge 1$.References
- Stefano Campi, Andrea Colesanti, and Paolo Gronchi, A note on Sylvester’s problem for random polytopes in a convex body, Rend. Istit. Mat. Univ. Trieste 31 (1999), no. 1-2, 79–94. MR 1763244
- S. Campi and P. Gronchi, The $L^p$-Busemann-Petty centroid inequality, Adv. Math. 167 (2002), no. 1, 128–141. MR 1901248, DOI 10.1006/aima.2001.2036
- Stefano Campi and Paolo Gronchi, On the reverse $L^p$-Busemann-Petty centroid inequality, Mathematika 49 (2002), no. 1-2, 1–11 (2004). MR 2059037, DOI 10.1112/S0025579300016004
- Stefano Campi and Paolo Gronchi, On volume product inequalities for convex sets, Proc. Amer. Math. Soc. 134 (2006), no. 8, 2393–2402. MR 2213713, DOI 10.1090/S0002-9939-06-08241-4
- Stefano Campi and Paolo Gronchi, Volume inequalities for $L_p$-zonotopes, Mathematika 53 (2006), no. 1, 71–80 (2007). MR 2304053, DOI 10.1112/S0025579300000036
- Wm. J. Firey, $p$-means of convex bodies, Math. Scand. 10 (1962), 17–24. MR 141003, DOI 10.7146/math.scand.a-10510
- Changqing Hu, Xi-Nan Ma, and Chunli Shen, On the Christoffel-Minkowski problem of Firey’s $p$-sum, Calc. Var. Partial Differential Equations 21 (2004), no. 2, 137–155. MR 2085300, DOI 10.1007/s00526-003-0250-9
- Fritz John, Extremum problems with inequalities as subsidiary conditions, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 187–204. MR 0030135
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. I. Mixed volumes and the Minkowski problem, J. Differential Geom. 38 (1993), no. 1, 131–150. MR 1231704
- Erwin Lutwak, The Brunn-Minkowski-Firey theory. II. Affine and geominimal surface areas, Adv. Math. 118 (1996), no. 2, 244–294. MR 1378681, DOI 10.1006/aima.1996.0022
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, $L_p$ affine isoperimetric inequalities, J. Differential Geom. 56 (2000), no. 1, 111–132. MR 1863023
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, Sharp affine $L_p$ Sobolev inequalities, J. Differential Geom. 62 (2002), no. 1, 17–38. MR 1987375
- Erwin Lutwak, Deane Yang, and Gaoyong Zhang, On the $L_p$-Minkowski problem, Trans. Amer. Math. Soc. 356 (2004), no. 11, 4359–4370. MR 2067123, DOI 10.1090/S0002-9947-03-03403-2
- Mathieu Meyer and Shlomo Reisner, Shadow systems and volumes of polar convex bodies, Mathematika 53 (2006), no. 1, 129–148 (2007). MR 2304056, DOI 10.1112/S0025579300000061
- C. A. Rogers and G. C. Shephard, The difference body of a convex body, Arch. Math. (Basel) 8 (1957), 220–233. MR 92172, DOI 10.1007/BF01899997
- C. A. Rogers and G. C. Shephard, Convex bodies associated with a given convex body, J. London Math. Soc. 33 (1958), 270–281. MR 101508, DOI 10.1112/jlms/s1-33.3.270
- C. A. Rogers and G. C. Shephard, Some extremal problems for convex bodies, Mathematika 5 (1958), 93–102. MR 104203, DOI 10.1112/S0025579300001418
- Rolf Schneider, Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, vol. 44, Cambridge University Press, Cambridge, 1993. MR 1216521, DOI 10.1017/CBO9780511526282
- G. C. Shephard, Shadow systems of convex sets, Israel J. Math. 2 (1964), 229–236. MR 179686, DOI 10.1007/BF02759738
Bibliographic Information
- Chiara Bianchini
- Affiliation: Dipartimento di Matematica ‘U. Dini’, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
- Email: chiara.bianchini@math.unifi.it
- Andrea Colesanti
- Affiliation: Dipartimento di Matematica ‘U. Dini’, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy
- Email: colesant@math.unifi.it
- Received by editor(s): February 6, 2007
- Published electronically: March 10, 2008
- Communicated by: Jon G. Wolfson
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 2575-2582
- MSC (2000): Primary 52A40; Secondary 52A10
- DOI: https://doi.org/10.1090/S0002-9939-08-09209-5
- MathSciNet review: 2390529