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ON DECAY OF SOLUTIONS
TO NONLINEAR SCHRÖDINGER EQUATIONS

ALEXANDER PANKOV

(Communicated by Michael Weinstein)

Abstract. We present general results on exponential decay of finite energy
solutions to stationary nonlinear Schrödinger equations. Under certain natu-
ral assumptions we show that any such solution is continuous and vanishes at
infinity. This allows us to interpret the solution as a finite multiplicity eigen-
function of a certain linear Schrödinger operator and, hence, apply well-known
results on the decay of eigenfunctions.

In this note we consider the equation

(1) −∆u + V (x)u = f(x, u), x ∈ R
n,

and, under rather general assumptions, derive exponential decay estimates for its
solutions.

We suppose that

(i) The potential V belongs to L∞
loc(R

n) and is bounded below, i.e. V (x) ≥ −c0

for some c0 ∈ R.

Under assumption (i) the left hand side of equation (1) defines a self-adjoint op-
erator in L2(Rn) denoted by H. The operator H is bounded below. We suppose
that

(ii) The essential spectrum σess(H) of the operator H does not contain the point
0.

Note, however, that 0 can be an eigenvalue of finite multiplicity.
The nonlinearity of f is supposed to satisfy the following assumption.

(iii) The function f(x, u) is a Carathéodory function; i.e. it is Lebesgue measur-
able with respect to x ∈ R

n for all u ∈ R and continuous with respect to u ∈ R for
almost all x ∈ R

n. Furthermore,

(2) |f(x, u)| ≤ c(1 + |u|p−1) , x ∈ R
n u ∈ R ,

with c > 0 and 2 ≤ p < 2∗, where

2∗ =

⎧⎨
⎩

2n

n − 2
if n ≥ 3 ,

∞ if n = 1, 2 ,
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and

lim
u→0

ess supx∈Rn

|f(x, u)|
|u| = 0 .

Let E denote the form domain of the operator H, i.e., the domain of the corre-
sponding quadratic form or, which is the same, the domain of the operator H1/2.
It is well-known that

E = {u ∈ H1(Rn) : (V (x) + c0 + 1)u(x) ∈ L2(Rn)}
where c0 is the constant from assumption (i). Moreover, E carries a natural Hilbert
space structure and is continuously embedded into the space H1(Rn). In what
follows we consider only weak solutions that belong to the space E. A function
u ∈ E is a weak solution of equation (1) if for all v ∈ E the integral identity

(3)
∫

Rn

(∇u(x) · ∇v(x) + V (x)u(x)v(x) − f(x, u(x))v(x)) dx = 0

is satisfied. Actually, it is sufficient to check identity (3) only for functions v
that belong to the space C∞

0 (Rn) of all finitely supported infinitely differentiable
functions. Also we note that, due to the Sobolev embedding theorem, the term
f(x, u(x))v(x) in (3) is integrable for all u, v ∈ H1(Rn).

The existence of (nontrivial) finite energy solutions is one of the main problems
concerning equation (1). There are many papers in this direction, but we do not
address the existence problem here. We only mention that in most such results
assumptions (i)–(iii) are satisfied. For instance, let us consider the equation

(4) −∆u + V (x)u = |u|p−2u, x ∈ R
n,

with 2 < p < 2∗. Equation (4) possesses a nontrivial finite energy solution at least
in the following two cases: (a) the potential V is periodic and 0 is in a spectral
gap of the operator H [8, 10, 16], (b) V (x) → +∞ as x → ∞ [12]. In case (b) the
spectrum of the operator H is discrete. An introductory exposition and references
concerning the existence problem can be found in [11].

There are a number of results on exponential decay of solutions to equation (1)
(see [1, 3, 4, 10, 11, 15]). Most of them, except [10, 11], deal with the case when
0 is below the essential spectrum of H. However, the case when 0 is in a spectral
gap is extremely important for applications [10]. Here we present a rather general
result in this direction.

We exploit the following rather simple idea. Suppose that u ∈ E is a nontrivial,
i.e. u �= 0, solution to equation (1). Set

W (x) =

⎧⎨
⎩

f(x, u(x))
u(x)

if u(x) �= 0 ,

0 if u(x) = 0.

Then equation (1) can be represented as

(5) (H + W )u = 0 .

This means that u is an eigenfunction of the operator H +W with zero eigenvalue.
Now if the multiplication operator by W is relatively compact with respect to the
operator H, then

σess(H + W ) = σess(H) .
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Hence, 0 is an eigenvalue of H + W of finite multiplicity and u a corresponding
eigenfunction (see, e.g., [6, 13]). Now an exponential decay of u can be read from any
well-known result about eigenfunctions. More precisely, the solution u has exactly
the same decay as an eigenfunction that corresponds to an eigenvalue introduced
into a spectral gap by a decaying perturbation of the potential V .

Thus, we only need to verify that the multiplication operator by the function W
is relatively compact with respect to H. The key point is the following:

Lemma 1. Under assumptions (i)–(iii) suppose that u ∈ E is a solution of equation
(1). Then u is a continuous function and

lim
x→∞

u(x) = 0 .

We postpone the proof of the lemma and first present the main results.
Due to a well-known result (see, e.g., Theorem 8.3.1 of [11]), Lemma 1 implies

that the multiplication operator by W is a relatively compact perturbation of the
operator H. Making use of Theorem C.3.4, [14], we obtain

Theorem 2. Assume (i)–(iii). Let u ∈ E be a solution of equation (1). Then
there exists α0 > 0 such that for every α < α0 we have

(6) |u(x)| ≤ C exp(−α|x|)
with some C = Cα > 0.

Remark 3. An interesting case is when the potential is periodic. If, in addition, the
nonlinearity is superlinear, i.e. f(·, u) ≥ c|u|p−1 at infinity, with p > 2, the result
of Theorem 2 is announced in [10]. However, assumption (iii) allows asymptoti-
cally linear nonlinearities (p = 2). As a consequence, solutions found in [9] decay
exponentially fast.

Remark 4. The value of α0 can be estimated in terms of the distance between 0
and σess(H) (see, e.g., [5]).

Now we consider the case when σess(H) = ∅; i.e. the spectrum of H is discrete.
This is so if, e.g.,

lim
|x|→∞

V (x) = ∞ .

For a necessary and sufficient condition for the discreteness of spectrum, see [7] and
the references therein. In this case Theorem C.3.3 of [14] implies

Theorem 5. Under assumptions (i)–(iii), suppose that the spectrum of H is dis-
crete. Let u ∈ E be a solution of equation (1). Then for every α > 0 there exists
C = Cα > 0 such that

(7) |u(x)| ≤ C exp(−α|x|) .

Having additional information about the behavior of V at infinity, one can refine
the result of Theorem 5. For instance, making use of Theorem 3.3 of [2], we obtain

Theorem 6. In addition to assumptions (i)–(iii), suppose that

(8) V (x) ≥ γ|x|β − γ0

with γ > 0, γ0 ≥ 0 and β > 0. Then for any solution u ∈ E of equation (1) we
have that

(9) |u(x) ≤ C exp(−a|x|
β
2 +1) ,

with some C > 0 and a > 0.
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We now prove Lemma 1.

Proof of Lemma 1. The case n = 1 is trivial because any function from H1(R) is
continuous and vanishes at infinity.

Now we consider the case n ≥ 3. We use a version of the well-known bootstrap
argument as follows.

Equation (1) can be rewritten as

(10) (−∆ + V + c0 + 1) u = (c0 + 1) u + f(x, u) .

Note that by the Sobolev embedding, u ∈ L2∗
(Rn).

Suppose now that u ∈ L∞(Rn) + Lr(Rn) with r ≥ 2∗. Let

A =
{
x ∈ R

n :
∣∣u(x)

∣∣ ≥ 1
}

and B = R
n \ A. It is easy to see that meas (A) < ∞. Denote by χA and χB the

characteristic functions of the sets A and B, respectively, i.e. χA = 1 on A, χA = 0
on B and χB = 1 − χA.

Let

H1 = −∆ + V (x) + c0 + 1 ,

h0(x) = χB(x)
[
(c0 + 1) u(x) + f(x, u)

]
,

and
h1(x) = χA(x)

[
(c0 + 1) u(x) + f(x, u)

]
.

Equation (10) becomes

(11) H1u = h0(x) + h1(x).

Obviously, h0 ∈ L∞(Rn), while assumption (iii) implies that h1 ∈ Ls(Rn) where

s =
r

p − 1
.

The operator H1 is positive definite and satisfies the assumptions of the Sobolev
estimate theorem for Schrödinger operators (see Theorem B.2.1 of [14]). Hence, we
obtain from (11) that u = u0 + u1, where

u0 = H−1
1 h0 ∈ L∞(Rn)

and
u1 = H−1

1 h1 ∈ Lq(Rn)
for every q such that

(12)
1
s
− 1

q
<

2
n

.

If s > n/2, i.e.

(13) r >
n(p − 1)

2
,

we can take q = ∞ to obtain u1 ∈ L∞(Rn) and, hence, u = u0 + u1 ∈ L∞(Rn).
Otherwise, take

q =
r

1 − δ
,

where
δ =

4
n − 2

− (p − 2) − ε
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and ε > 0 is arbitrarily small. Note that

p − 2 <
4

n − 2
because p < 2∗. Since r ≥ 2∗, we have that

1
s
− 1

q
=

p − 1
r

− 1 − δ

r
=

1
r

(
4

n − 2
− ε

)
≤ 1

2∗

(
4

n − 2
− ε

)

=
2
n
− n − 2

2n
ε .

Therefore, q satisfies (12) and u1 ∈ Lq(Rn). Hence,

u = u0 + u1 ∈ L∞(Rn) + Lq(Rn) .

It is not difficult to verify that χAu ∈ Lq(Rn) and h1 ∈ Lq/(p−1)(Rn).
Now starting with r = r0 = 2∗, we can iterate the previous procedure. Thus, we

have that u ∈ L∞(Rn) + Lrk(Rn), where

rk =
2∗

(1 − δ)k
.

Let k be so large that

rk >
n(p − 1)

2
(see (13)). Then

sk =
rk

p − 1
>

n

2
,

and we can apply the Sobolev estimate of Theorem B.2.1 of [14] with s = sk and
q = ∞. Therefore, u1 ∈ L∞(Rn) and, hence, u = u0 + u1 ∈ L∞(Rn).

This immediately implies that the additional potential W belongs to L∞
loc(R

n)
and is bounded below. Therefore, due to Theorems C.1.1 and C.3.1 of [14] the
result follows.

The case n = 2 is simpler. By the Sobolev embedding, u ∈ Lr(Rn) for arbitrarily
large r. Hence, the previous argument shows that u ∈ L∞(Rn), and we are done.
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