ON DRAZIN INVERTIBILITY

PIETRO AIENA, MARIA T. BIONDI, AND CARLOS CARPINTERO

(Communicated by Joseph A. Ball)

Abstract. The left Drazin spectrum and the Drazin spectrum coincide with the upper semi-B-Browder spectrum and the B-Browder spectrum, respectively. We also prove that some spectra coincide whenever \(T \) or \(T^* \) satisfies the single-valued extension property.

1. Introduction and preliminaries

Throughout this note \(L(X) \) will denote the algebra of all bounded linear operators acting on an infinite-dimensional complex Banach space \(X \). The operator \(T \in L(X) \) is said to be upper semi-Fredholm if its kernel \(\ker T \) is finite-dimensional and the range \(T(X) \) is closed, while \(T \in L(X) \) is said to be lower semi-Fredholm if \(T(X) \) is finite-codimensional. If either \(T \) is upper or lower semi-Fredholm, then \(T \) is said to be a semi-Fredholm operator, while \(T \) is said to be a Fredholm operator if it is both upper and lower semi-Fredholm. If \(T \in L(X) \) is semi-Fredholm, the classical index of \(T \) is defined by \(\text{ind}(T) := \dim \ker T - \text{codim} T(X) \).

The concept of semi-Fredholm operators has been generalized by Berkani ([9], [13] and [11]) in the following way: for every \(T \in L(X) \) and a nonnegative integer \(n \) let us denote by \(T \mid_n \) the restriction of \(T \) to \(T^n(X) \) viewed as a map from the space \(T^n(X) \) into itself (we set \(T \mid_0 = T \)). \(T \in L(X) \) is said to be semi-B-Fredholm, (resp. B-Fredholm, upper semi-B-Fredholm, lower semi-B-Fredholm,) if for some integer \(n \geq 0 \) the range \(T^n(X) \) is closed and \(T \mid_n \) is a semi-Fredholm operator (resp. Fredholm, upper semi-Fredholm, lower semi-Fredholm). In this case \(T \mid_m \) is a semi-Fredholm operator for all \(m \geq n \) ([13]). This enables one to define the index of a semi-B-Fredholm operator as \(\text{ind}(T) = \text{ind}(T \mid_n) \).

A bounded operator \(T \in L(X) \) is said to be a Weyl operator if \(T \) is a Fredholm operator having index 0. A bounded operator \(T \in L(X) \) is said to be B-Weyl if for some integer \(n \geq 0 \) the range \(T^n(X) \) is closed and \(T \mid_n \) is Weyl. The Weyl spectrum and the B-Weyl spectrum are defined, respectively, by

\[
\sigma_w(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not Weyl} \}
\]

and

\[
\sigma_{bw}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not B-Weyl} \}.
\]

Recall that the ascent of an operator \(T \in L(X) \) is defined as the smallest nonnegative integer \(p := p(T) \) such that \(\ker T^p = \ker T^{p+1} \). If such an integer does not
exist, we put \(p(T) = \infty \). Analogously, the descent of \(T \) is defined as the smallest nonnegative integer \(q := q(T) \) such that \(T^q(X) = T^{q+1}(X) \), and if such an integer does not exist, we put \(q(T) = \infty \). It is well known that if \(p(T) \) and \(q(T) \) are both finite, then \(p(T) = q(T) \); see [1] Theorem 3.3. Moreover, if \(\lambda \in \mathbb{C} \), the condition \(0 < p(\lambda I - T) = q(\lambda I - T) < \infty \) is equivalent to saying that \(\lambda \) is a pole of the resolvent. In this case \(\lambda \) is an eigenvalue of \(T \) and an isolated point of the spectrum \(\sigma(T) \); see [17] Prop. 50.2.

The concept of Drazin invertibility [14] has been introduced in a more abstract setting than operator theory [14]. In the case of the Banach algebra \(L(X), T \in L(X) \) is said to be Drazin invertible (with a finite index) precisely when \(p(T) = q(T) < \infty \) and this is equivalent to saying that \(T = T_0 \oplus T_1 \), where \(T_0 \) is invertible and \(T_1 \) is nilpotent; see [19] Corollary 2.2 and [18] Prop. A]. Every \(B \)-Fredholm operator \(T \) admits the representation \(T = T_0 \oplus T_1 \), where \(T_0 \) is Fredholm and \(T_1 \) is nilpotent [11], so every Drazin invertible operator is \(B \)-Fredholm.

The concept of Drazin invertibility for bounded operators may be extended as follows.

Definition 1.1. \(T \in L(X) \) is said to be left Drazin invertible if \(p := p(T) < \infty \) and \(T^{p+1}(X) \) is closed; while \(T \in L(X) \) is said to be right Drazin invertible if \(q := q(T) < \infty \) and \(T^q(X) \) is closed.

It should be noted that the condition \(q = q(T) < \infty \) does not entail that \(T^q(X) \) is closed; see Example 5 of [21]. Clearly, \(T \in L(X) \) is both right and left Drazin invertible if and only if \(T \) is Drazin invertible. In fact, if \(0 < p := p(T) = q(T) \), then \(T^p(X) = T^{p+1}(X) \) is the kernel of the spectral projection associated with the spectral set \(\{0\} \); see [17] Prop. 50.2.

The left Drazin spectrum is then defined as

\[
\sigma_{ld}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not left Drazin invertible} \},
\]

the right Drazin spectrum is defined as

\[
\sigma_{rd}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not right Drazin invertible} \},
\]

and the Drazin spectrum is defined as

\[
\sigma_{d}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not Drazin invertible} \}.
\]

Obviously, \(\sigma_{d}(T) = \sigma_{ld}(T) \cup \sigma_{rd}(T) \).

A bounded operator \(T \in L(X) \) is said to be Browder (resp. upper semi-Browder, lower semi-Browder) if \(T \) is Fredholm and \(p(T) = q(T) < \infty \) (resp. \(T \) is upper semi-Fredholm and \(p(T) < \infty \), \(T \) is lower semi-Fredholm and \(q(T) < \infty \)). Every Browder operator is Weyl and hence, if

\[
\sigma_{b}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not Browder} \}
\]

denotes the Browder spectrum of \(T \), then \(\sigma_{w}(T) \subseteq \sigma_{b}(T) \). In the sequel by \(\sigma_{ub}(T) \) we shall denote the upper semi-Browder spectrum of \(T \) defined by

\[
\sigma_{ub}(T) := \{ \lambda \in \mathbb{C} : \lambda I - T \text{ is not upper semi-Browder} \}.
\]

Clearly, every bounded below operator \(T \in L(X) \) (\(T \) injective with closed range) is upper semi-Browder, while every surjective operator is lower semi-Browder. The classical approximate point spectrum of \(T \) will be denoted by \(\sigma_{a}(T) \) while by \(\sigma_{s}(T) \) we shall denote the surjectivity spectrum of \(T \).
It is natural to extend the concept of semi-Browder operators as follows: A bounded operator \(T \in L(X) \) is said to be \(B \)-Browder (resp. upper semi-\(B \)-Browder, lower semi-\(B \)-Browder) if for some integer \(n \geq 0 \) the range \(T^n(X) \) is closed and \(T^n \) is Browder (resp. upper semi-Browder, lower semi-Browder). The respective \(B \)-Browder spectra are denoted by \(\sigma_{bb}(T) \), \(\sigma_{usbb}(T) \) and \(\sigma_{lsbb}(T) \).

The main result of this paper establishes that \(T \in L(X) \) is \(B \)-Browder (respectively, upper semi-\(B \)-Browder, lower semi-Browder) if and only if \(T \) is Drazin invertible (respectively, left Drazin invertible, right Drazin invertible); consequently \(\sigma_{bb}(T) = \sigma_d(T) \), \(\sigma_{usbb}(T) = \sigma_{ld}(T) \) and \(\sigma_{lsbb}(T) = \sigma_{rd}(T) \). We also prove that many of the spectra before introduced coincide whenever \(T \), or its dual \(T^* \), satisfies the single-valued extension property.

2. SVEP and semi-\(B \)-Browder spectra

A useful tool in the Fredholm theory is given by the localized single-valued extension property. This property has an important role in local spectral theory; see the recent monographs by Laursen and Neumann [20] and Aiena [1].

Definition 2.1. Let \(X \) be a complex Banach space and \(T \in L(X) \). The operator \(T \) is said to have the single-valued extension property at \(\lambda_0 \in \mathbb{C} \) (abbreviated SVEP at \(\lambda_0 \)) if for every open disc \(D \) of \(\lambda_0 \), the only analytic function \(f: U \to X \) that satisfies the equation \((\lambda I - T)f(\lambda) = 0 \) for all \(\lambda \in D \) is the function \(f \equiv 0 \). An operator \(T \in L(X) \) is said to have SVEP if \(T \) has SVEP at every point \(\lambda \in \mathbb{C} \).

Evidently, \(T \in L(X) \) has SVEP at every point of the resolvent \(\rho(T) := \mathbb{C} \setminus \sigma(T) \). Moreover, from the identity theorem for analytic functions it is easily seen that \(T \) has SVEP at every point of the boundary \(\partial \sigma(T) \) of the spectrum. In particular, \(T \) has SVEP at every isolated point of the spectrum. Note that the localized SVEP is inherited by the restriction to closed invariant subspaces; i.e., if \(T \) has SVEP at \(\lambda_0 \) and \(M \) is a closed \(T \)-invariant subspace of \(X \), then \(T|_M \) has SVEP at \(\lambda_0 \). Moreover, the set \(\Sigma(T) \) of all points \(\lambda \in \mathbb{C} \) such that \(T \) does not have SVEP at \(\lambda \) is an open set contained in the interior of the spectrum of \(T \). Consequently, if \(T \) has SVEP at each point \(\lambda \) of an open punctured disc \(\mathbb{D} \setminus \{\lambda_0\} \) centered at \(\lambda_0 \), then \(T \) also has SVEP at \(\lambda_0 \).

We have

\[(1) \quad p(\lambda I - T) < \infty \Rightarrow T \text{ has SVEP at } \lambda,\]

and dually,

\[(2) \quad q(\lambda I - T) < \infty \Rightarrow T^* \text{ has SVEP at } \lambda;\]

see [1] Theorem 3.8]. Furthermore, from the definition of localized SVEP it is easily seen that

\[(3) \quad \sigma_a(T) \text{ does not cluster at } \lambda \Rightarrow T \text{ has SVEP at } \lambda,\]

and dually,

\[(4) \quad \sigma_s(T) \text{ does not cluster at } \lambda \Rightarrow T^* \text{ has SVEP at } \lambda.\]

Remark 2.2. The implications (1), (2), (3) and (4) are actually equivalences if \(T \) is a semi-Fredholm operator; see [5] or [1, Chapter 3].
Lemma 2.3. If $T \in L(X)$ and $p = p(T) < \infty$, then the following statements are equivalent:

(i) there exists $n \geq p + 1$ such that $T^n(X)$ is closed;

(ii) $T^n(X)$ is closed for all $n \geq p$.

Proof. Define $c'_i(T) := \dim(\ker T^i/\ker T^{i+1})$. Clearly, $p = p(T) < \infty$ entails that $c'_i(T) = 0$ for all $i \geq p$, so $k_i(T) := c'_i(T) - c'_{i+1}(T) = 0$ for all $i \geq p$. The equivalence then easily follows from [21, Lemma 12].

Define

\[\Delta(T) := \{ n \in \mathbb{N} : m \geq n, m \in \mathbb{N} \Rightarrow T^n(X) \cap \ker T \subseteq T^m(X) \cap \ker T \}. \]

The degree of stable iteration is defined as $\text{dis}(T) := \inf \Delta(T)$ if $\Delta(T) \neq \emptyset$, while $\text{dis}(T) = \infty$ if $\Delta(T) = \emptyset$.

Definition 2.4. $T \in L(X)$ is said to be quasi-Fredholm of degree d if there exists $d \in \mathbb{N}$ such that:

(a) $\text{dis}(T) = d$,

(b) $T^n(X)$ is a closed subspace of X for each $n \geq d$,

(c) $T(X) + \ker T^d$ is a closed subspace of X.

It should be noted that by Proposition 2.5 of [13] every semi-B-Fredholm operator is quasi-Fredholm.

Theorem 2.5. For every $T \in L(X)$ the following statements are equivalent:

(i) T is left Drazin invertible;

(ii) There exists $n \in \mathbb{N}$ such that $T^n(X)$ is closed and $T_{[n]}$ is bounded below;

(iii) T is semi-B-Fredholm and T has SVEP at 0.

Dually, if $T \in L(X)$ the following statements are equivalent:

(iv) T is right Drazin invertible;

(v) there exists $n \in \mathbb{N}$ such that $T^n(X)$ is closed and $T_{[n]}$ is onto;

(vi) T is semi-B-Fredholm and T^* has SVEP at 0.

Proof. (i) \iff (ii) Suppose that T is left Drazin invertible. Then $p = p(T) < \infty$ and $T^{p+1}(X)$ is closed. From Lemma 2.3 it follows that $T^p(X)$ is closed. By [11, Lemma 3.2] we have $\ker T \cap T^p(X) = \ker T_{[p]} = \{0\}$, so $T_{[p]}$ is injective. The range of $T_{[p]}$ is closed, since it coincides with $T^{p+1}(X)$; hence $T_{[p]}$ is bounded below, so the condition (ii) is satisfied.

Conversely, suppose that there exists $n \in \mathbb{N}$ such that $T^n(X)$ is closed and $T_{[n]}$ is bounded below. Let us consider an element $x \in \ker T^{n+1}$. Clearly, $T(T^n x) = 0$ so $T^n x \in \ker T$. Since $T^n x \in T^n(X)$ it then follows that $T^n x \in \ker T \cap T^n(X) = \ker T_{[n]} = \{0\}$; thus $x \in \ker T^n$. Therefore, $\ker T^{n+1} = \ker T^n$, so T has finite ascent $p := p(T) \leq n$. The range of $T_{[n]}$ is the closed subspace $T^{n+1}(X)$, with $p + 1 \leq n + 1$. Therefore $T^{p+1}(X)$ is closed; thus T is left Drazin invertible.

(ii) \iff (iii) Assume (i) or equivalently (ii). Then T has SVEP at 0, since $p(T) < \infty$ and $T_{[n]}$ is upper semi-Fredholm, so T is upper semi-B-Fredholm.

Conversely, suppose that T is semi-B-Fredholm and T has SVEP at 0. By Proposition 3.2 of [10] if T quasi-Fredholm, in particular if T is semi-B-Fredholm, then there exists $n \in \mathbb{N}$ such that $T^n(X)$ is closed and $T_{[n]}$ is semi-regular (i.e., it has closed range and its kernel is contained in the range of each iterate of $T_{[n]}$). Since the restriction $T_{[n]}$ has SVEP at 0, from Theorem 2.49 of [11] it then follows that $T_{[n]}$ is bounded below.
Theorem 2.7. [2] More generally for quasi-Fredholm operators, may be characterized as follows:

\[T\text{is upper semi-Browder for some } n \iff \text{upper semi-Fredholm, then } \hat{T} \text{ is onto. Moreover, } T^n(X) \text{ is closed by assumption. Conversely, if (v) holds, then } T^{n+1}(X) = T^n(X) \text{ so } q := q(T) \leq n. \text{ Obviously, } T^q(X) = T^n(X) \text{ is closed.} \]

(v) \iff (vi). Assume (v), or equivalently (iv). Since \(q := q(T) < \infty \), then \(T^* \) has SVEP at 0 and, clearly, \(T_n \) is lower semi-Fredholm, so (vi) holds. The opposite implication has been proved in [2] Theorem 2.7. \(\square \)

Corollary 2.6. \(T \in L(X) \) is Drazin invertible if and only if \(T \) is semi-B-Fredholm and both \(T \) and \(T^* \) have SVEP at 0.

The condition that \(T \), or \(T^* \), has SVEP at 0 for semi-B-Fredholm operators, more generally for quasi-Fredholm operators, may be characterized as follows:

Theorem 2.7. [2] Suppose that \(T \in L(X) \) is quasi-Fredholm. Then the following statements are equivalent:

(i) \(T \) has SVEP at 0;
(ii) \(\sigma(T) \) does not cluster at 0.

Dually, if \(T \in L(X) \) is quasi-Fredholm, then the following statements are equivalent:

(iii) \(T^* \) has SVEP at 0;
(iv) \(\sigma(T) \) does not cluster at 0.

Given \(n \in \mathbb{N} \) let us denote by \(\hat{T}_n : X/\ker T^n \to X/\ker T^n \) the quotient map defined canonically by \(\hat{T}_n \hat{x} := \hat{T}x \) for each \(\hat{x} \in \hat{X} := X/\ker T^n \), where \(x \in \hat{x} \).

Lemma 2.8. Suppose that \(T \in L(X) \) and \(T^n(X) \) is closed for some \(n \in \mathbb{N} \). If \(T_n \) is upper semi-Fredholm, then \(\hat{T}_n \) is upper semi-Fredholm and \(\text{ind} \hat{T}_n = \text{ind} T_n \). Analogous statements hold if \(T_n \) is assumed to be lower semi-Fredholm, Weyl, upper or lower semi-Browder, respectively.

Proof. The operator \([T^n] : X/\ker T^n \to T^n(X)\) defined by \([T^n]\hat{x} = T^n x, \text{ where } x \in \hat{x},\) is a bijection, and it easy to check that \([T^n]\hat{T}_n = T_n[T^n],\) from which the statements follow. \(\square \)

Theorem 2.9. Suppose that \(T \in L(X) \). Then the following equivalences hold:

(i) \(T \) is upper semi-B-Browder if and only if \(T \) is left Drazin invertible.
(ii) \(T \) is lower semi-B-Browder if and only if \(T \) is right Drazin invertible.
(iii) \(T \) is B-Browder if and only if \(T \) is Drazin invertible.

Proof. (i) Trivially, every bounded below operator is upper semi-Browder. By Theorem 2.6 if \(T \) is left Drazin invertible, then \(T \) is upper semi-B-Browder.

Conversely, suppose that \(T \) is upper semi-B-Browder. By Lemma 2.8 then \(\hat{T}_n \) is upper semi-Browder for some \(n \in \mathbb{N} \) and hence by Remark 2.2 the condition \(p(\hat{T}_n) < \infty \) is equivalent to saying that \(\sigma_n(\hat{T}_n) \) does not cluster at 0. Let \(D(0, \varepsilon) \) be an open ball centered at 0 such that \(D(0, \varepsilon) \setminus \{0\} \) does not contain points of \(\sigma_n(\hat{T}_n) \), so

\[\ker (\lambda I - \hat{T}_n) = \{0\} \text{ for all } 0 < |\lambda| < \varepsilon. \]

Since the restriction \(T|\ker T^n \) is nilpotent we also have that \(D(0, \varepsilon) \setminus \{0\} \subseteq \rho(T|\ker T^n), \rho(T|\ker T^n) \) the resolvent of \(T|\ker T^n \), so

\[(\lambda I - T)(\ker T^n) = \ker T^n \text{ for all } 0 < |\lambda| < \varepsilon. \]
Since for all $0 < |\lambda| < \varepsilon$ we also have $\ker (\lambda I - T) \ker T^n = \{0\}$, it then easily follows that $\ker (\lambda I - T) = \{0\}$, i.e. $\lambda I - T$ is injective for all $0 < |\lambda| < \varepsilon$.

We show now that $(\lambda I - T)(X)$ is closed for all $0 < |\lambda| < \varepsilon$.

Set $\bar{X} := X/\ker T^n$ and let $w \in (\lambda I - T)(X)$ be arbitrary. Then there exists $x \in X$ such that $w = (\lambda I - T)x$ and hence $\hat{w} = (\lambda I - \hat{T}_n)\hat{x} \in (\lambda I - \hat{T}_n)(\bar{X})$. Since $\lambda \notin \sigma_\alpha(\hat{T}_n)$, then $(\lambda I - \hat{T}_n)(\bar{X})$ is closed, and hence there exists a sequence $(w_n) \subset X$ such that $(\lambda I - \hat{T}_n)w_n \to \hat{w}$ as $n \to +\infty$; thus

$$(\lambda I - T)w_n - w \to z_n \in \ker T^n.$$

From (i) we know that there exists $y_n \in \ker T^n$ such that $z_n = (\lambda I - T)y_n$, and hence

$$(\lambda I - T)w_n - (\lambda I - T)y_n = (\lambda I - T)(w_n - y_n) \to w,$$

so that $(\lambda I - T)(X)$ is closed. We have shown that $\lambda I - T$ is bounded below for all $0 < |\lambda| < \varepsilon$ and, consequently, 0 is an isolated point of $\sigma_\alpha(T)$. This implies that T has SVEP at 0 and since by assumption T is upper semi-B-Browder from Theorem 2.8, we then conclude that T is left Drazin invertible.

(ii) By Theorem 2.5, if T is right Drazin invertible, then there exists $n \in \mathbb{N}$ such that T_n is onto and hence lower semi-B-Browder.

Conversely, suppose that T is lower semi-B-Browder and let $n \in \mathbb{N}$ such that T_n is lower semi-Browder. By Lemma 2.8, then \hat{T}_n is lower semi-Browder and hence the condition $q(\hat{T}_n) < \infty$ is equivalent to saying that $\sigma_\alpha(\hat{T}_n)$ does not cluster at 0. Let $\mathbb{D}(0, \varepsilon)$ be an open ball centered at 0 such that $\mathbb{D}(0, \varepsilon) \setminus \{0\}$ does not contain points of $\sigma_\alpha(\hat{T}_n)$. As in the proof of part (i) we have $(\lambda I - T)(\ker T^n) = \ker T^n$ for all $0 < |\lambda| < \varepsilon$. We show that $(\lambda I - T)(X) = X$ for all $0 < |\lambda| < \varepsilon$. Since $\lambda I - \hat{T}_n$ is onto, for each $x \in X$ there exists $\hat{y} \in X$ such that $(\lambda I - \hat{T}_n)\hat{y} = \hat{x}$ and hence

$$x - (\lambda I - T)y \in \ker T^n = (\lambda I - T)(\ker T^n).$$

Consequently, there exists $z \in \ker T^n$ such that $x - (\lambda I - T)y = (\lambda I - T)z$, from which it follows that

$$x = (\lambda I - T)(z + y) \in (\lambda I - T)(X).$$

We have proved that $\lambda I - T$ is onto for all $0 < |\lambda| < \varepsilon$; thus $\sigma_\alpha(T)$ does not cluster at 0 and consequently T^* has SVEP at 0. By Theorem 2.5 we then conclude that T is right Drazin invertible.

(iii) Clear.

\begin{corollary}
 For every $T \in L(X)$ we have

$$\sigma_{usbb}(T) = \sigma_{ld}(T), \quad \sigma_{lsbb}(T) = \sigma_{rd}(T), \quad \sigma_{bb}(T) = \sigma_d(T).$$

\end{corollary}

3. Browder type theorems

Let us denote by $USBF^-(X)$ the class of all upper semi-B-Fredholm operators with index less than or equal to 0, while by $LSBF^+(X)$ we denote the class of all lower semi-B-Fredholm operators with index greater than or equal to 0. Set

$$\sigma_{usbf^-}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \notin USBF^-(X)\}$$

and

$$\sigma_{lsbf^+}(T) := \{\lambda \in \mathbb{C} : \lambda I - T \notin LSBF^+(X)\}.$$
Theorem 3.1. If $T \in L(X)$, then the following equalities hold:

(i) $\sigma_{usbf}(T) = \sigma_{usbf-}(T) \cup \text{acc} \sigma_s(T)$.
(ii) $\sigma_{lsbf}(T) = \sigma_{lsbf+}(T) \cup \text{acc} \sigma_s(T)$.
(iii) $\sigma_{lb}(T) = \sigma_{lbw}(T) \cup \text{acc} \sigma(T)$.

Proof. The proof of the equalities (i), (iii) may be found in [6] and [7]. To show the equality (ii), we observe first that

$$\sigma_{lb+}(T) \subseteq \sigma_{rd}(T).$$

Indeed, if $\lambda \notin \sigma_{rd}(T)$, then, by Theorem 2.10 of [10] $\lambda I - T_n$ is onto some $n \in \mathbb{N}$, hence lower semi-Fredholm and

$$\text{ind}(\lambda I - T) = \text{ind}(\lambda I - T_n) = \alpha(\lambda I - T_n) \geq 0;$$

thus $\lambda \notin \sigma_{lb+}(T)$.

By Corollary 2.10 in order to show the inclusion $\sigma_{lsbf}(T) \subseteq \sigma_{lsbf+}(T) \cup \text{acc} \sigma_s(T)$ we need only to prove that $\text{acc} \sigma_s(T) \subseteq \sigma_{lsbf}(T)$. If $\lambda \notin \sigma_{lsbf}(T) = \sigma_{rd}(T)$, then $\lambda I - T$ is right Drazin invertible, and hence by Theorem 2.5 $\lambda I - T$ is σ-semi-B-Fredholm with $\varphi(\lambda I - T) < \infty$. By Corollary 4.8 of [16] it then follows that $\lambda I - T$ is onto in a punctured disc centered at λ; thus $\lambda \notin \text{acc} \sigma_s(T)$.

To show the opposite inclusion $\sigma_{lsbf}(T) \subseteq \sigma_{lsbf+}(T) \cup \text{acc} \sigma_s(T)$, suppose that $\lambda \notin \sigma_{lsbf+}(T) \cup \text{acc} \sigma_s(T)$. Since $\lambda \notin \text{acc} \sigma_s(T)$, then T^* has SVEP at λ. Since $\lambda I - T$ is lower semi-B-Fredholm by Theorem 2.5 then $\lambda I - T$ is right Drazin invertible. By Corollary 2.10 then $\lambda \notin \sigma_{rd}(T) = \sigma_{lsbf}(T)$, so the equality (ii) is proved.

A bounded operator $T \in L(X)$ is said to satisfy Browder’s theorem if $\sigma_w(T) = \sigma_b(T)$. Denote by $\sigma_{w^{-}}(T)$ the essential approximate point spectrum of T, defined as the complement in \mathbb{C} of the set of all λ such that $\lambda I - T$ is upper semi-Fredholm with $\text{ind} T \leq 0$. The operator $T \in L(X)$ is said to satisfy a-Browder’s theorem if $\sigma_{w^{-}}(T) = \sigma_{ab}(T)$; see for instance [4].

According to [12], a bounded operator $T \in L(X)$ is said to satisfy the generalized Browder’s theorem if $\sigma(T) \setminus \sigma_{w}(T) = \sigma_s(T)$, while $T \in L(X)$ is said to satisfy the generalized a-Browder’s theorem if $\sigma_a(T) \setminus \sigma_{usbf-}(T) = \sigma_{ld}(T)$.

Note that in all the papers concerning generalized Browder’s theorems (see for instance [7], [15], [12], [8]), there is no trace of the role of B-Browder spectra. Our Corollary 2.10 shows that this is only apparent. In fact, by Corollary 2.10 we have:

generalized Browder’s theorem holds for $T \Leftrightarrow \sigma_{bw}(T) = \sigma_{hh}(T)$.

while

generalized a-Browder’s theorem holds for $T \Leftrightarrow \sigma_{usbf-}(T) = \sigma_{usbf}(T)$.

Browder’s theorem may be characterized by localized SVEP: Browder’s theorem (resp. generalized Browder’s theorem) holds for T if and only if T has SVEP at every $\lambda \notin \sigma_w(T)$ (resp. T has SVEP at every $\lambda \notin \sigma_{bw}(T)$, see [7]), while a-Browder’s theorem (resp. generalized a-Browder’s theorem) holds for T if and only if T has SVEP at every $\lambda \notin \sigma_{usbf-}(T)$ (resp. T has SVEP at every $\lambda \notin \sigma_{usbf-}(T)$, see [8]). The inclusions $\sigma_{bw}(T) \subseteq \sigma_w(T)$ and $\sigma_{usbf-}(T) \subseteq \sigma_{usbf}(T)$ immediately entail that the generalized Browder’s theorem implies Browder’s theorem, and, analogously, the generalized a-Browder’s theorem implies a-Browder’s theorem. The main result of a very recent paper [8] proves that Browder’s theorem and the generalized Browder’s theorem (respectively, a-Browder’s theorem and the
Theorem 3.2. For every $T \in L(X)$ the following equivalences hold:

(i) $\sigma_{w}(T) = \sigma_{b}(T) \Leftrightarrow \sigma_{bw}(T) = \sigma_{bb}(T)$.

(ii) $\sigma_{usb}(T) = \sigma_{ub}(T) \Leftrightarrow \sigma_{usbb}(T) = \sigma_{usbf}(T)$.

Proof. (i) We have only to show the implication \Rightarrow. Assume that $\sigma_{w}(T) = \sigma_{b}(T)$. Clearly, $\sigma_{bw}(T) \subseteq \sigma_{bb}(T)$ for all $T \in L(X)$. To show the opposite inclusion, assume that $\lambda_{0} \notin \sigma_{bw}(T)$, i.e. that $\lambda_{0}I - T$ is B-Weyl. By [13, Corollary 3.2], then there exists an open disc \mathbb{D} such that $\lambda I - T$ is Weyl and hence Browder for all $\lambda \in \mathbb{D} \setminus \{\lambda_{0}\}$. Since $p(\lambda I - T) = q(\lambda I - T) < \infty$, then both T and T^{*} have SVEP at every $\lambda \in \mathbb{D} \setminus \{\lambda_{0}\}$, and hence both T and T^{*} have SVEP at λ_{0}. By Theorem 2.5, then $\lambda_{0}I - T$ is Drazin invertible, or equivalently $\lambda_{0} \notin \sigma_{bb}(T)$. Hence $\sigma_{bw}(T) = \sigma_{bb}(T)$.

(ii) Also here it suffices to prove the implication \Rightarrow. Assume that $\sigma_{usb}(T) = \sigma_{ub}(T)$. Clearly, $\sigma_{usbb}(T) \subseteq \sigma_{usf}(T)$ for all $T \in L(X)$. Suppose that $\lambda_{0} \notin \sigma_{usf}(T)$. Then $\lambda_{0}I - T \in USBF^{-}(X)$ and by [13, Corollary 3.2] there exists an open disc \mathbb{D} such that $\lambda I - T$ is upper semi-Fredholm with index less than or equal to 0 for all $\lambda \in \mathbb{D} \setminus \{\lambda_{0}\}$. From assumption then $\lambda I - T$ is upper semi-Browder; hence $p(\lambda I - T) < \infty$. Thus, T has SVEP at every $\lambda \in \mathbb{D} \setminus \{\lambda_{0}\}$ and hence T also has SVEP at λ_{0}. By Theorem 2.5 we then conclude that $\lambda_{0} \notin \sigma_{ub}(T) = \sigma_{usbb}(T)$, so the equality $\sigma_{usf}(T) = \sigma_{usbb}(T)$ is proved.

The following result shows that many of the spectra considered before coincide whenever T or T^{*} has SVEP.

Theorem 3.3. Suppose that $T \in L(X)$. Then the following statements hold:

(i) If T has SVEP, then

$$\sigma_{lbf}(T) = \sigma_{lbb}(T) = \sigma_{d}(T) = \sigma_{bw}(T).$$

(ii) If T^{*} has SVEP, then

$$\sigma_{usf}(T) = \sigma_{usbb}(T) = \sigma_{bw}(T) = \sigma_{d}(T).$$

(iii) If both T and T^{*} have SVEP, then

$$\sigma_{usf}(T) = \sigma_{lbf}(T) = \sigma_{bw}(T) = \sigma_{d}(T).$$

Proof. (i) By Theorem 3.1 and Corollary 2.10 we have

$$\sigma_{lbf}(T) \subseteq \sigma_{lbb}(T) = \sigma_{rd}(T) \subseteq \sigma_{d}(T).$$

We show now that $\sigma_{d}(T) \subseteq \sigma_{lbf}(T)$. Assume that $\lambda \notin \sigma_{lbf}(T)$. We may assume $\lambda = 0$. Since T is lower semi-B-Fredholm and since T^{*} has SVEP, in particular T^{*} has SVEP at 0, by Theorem 2.5 then T is right Drazin invertible or, equivalently, lower semi-B-Browder. Therefore there exists $n \in \mathbb{N}$ such that $T_{[n]}$ is lower semi-Fredholm and $q(T_{[n]}) < \infty$. By Theorem 3.4 of [1] it then follows that $\text{ind } T_{[n]} \leq 0$. On the other hand, since $\lambda \notin \sigma_{lbf}(T)$, we also have $\text{ind } T_{[n]} \geq 0$ from which we obtain $\text{ind } T_{[n]} = 0$. This implies, again by Theorem 3.4 of [1], that also $p(T_{[n]}) < \infty$, so that $T_{[n]}$ is Browder and hence T is B-Browder. By part (iii) of Theorem 2.10 then T is Drazin invertible, so $0 \notin \sigma_{d}(T)$, as desired. Finally, since T has SVEP by which the T satisfies the generalized Browder’s theorem, we have $\sigma_{bw}(T) = \sigma_{d}(T)$ and the equalities (8) are proved.
(ii) The inclusion $\sigma_{\text{sbf}}(T) \subseteq \sigma_{\text{ubhf}}(T) = \sigma_{\text{id}}(T) \subseteq \sigma_d(T)$ holds for every $T \in L(X)$ by Theorem 3.1 and Corollary 2.10.

We show that $\sigma_d(T) \subseteq \sigma_{\text{ubhf}}(T)$. Suppose that $\lambda \notin \sigma_{\text{ubhf}}(T)$ and assume that $\lambda = 0$. Since T is upper semi-B-Fredholm, then there exists $n \in \mathbb{N}$ such that T_n is upper semi-Fredholm. The restriction $T_n := T|T^n(X)$ has SVEP, in particular has SVEP at 0 and hence, see Remark 2.2, $p(T_n) < \infty$. By Theorem 3.4 of [1] it then follows that $\text{ind } T_n \leq 0$. On the other hand, since $\lambda \notin \sigma_{\text{sbf}}(T)$, we also have $\text{ind } T_n \geq 0$ from which we obtain $\text{ind } T_n = 0$. This implies, again by Theorem 3.4 of [1], that also $q(T_n) < \infty$, so that T_n is Browder and hence T is B-Browder. By part (iii) of Theorem 2.9 then T is Drazin invertible, so $0 \notin \sigma_d(T)$, as desired. Finally, since T has SVEP, then T satisfies the generalized Browder's theorem, so $\sigma_{\text{bw}}(T) = \sigma_d(T)$.

(iii) Clear from parts (i), (ii).

\[\Box \]

References

Dipartimento di Metodi e Modelli Matematici, Facoltà di Ingegneria, Università di Palermo, Viale delle Scienze, I-90128 Palermo, Italy

E-mail address: paiena@unipa.it

Departamento de Matemáticas, Facultad de Ciencias, Universidad UCLA de Barquisimeto, Venezuela

E-mail address: mtbiondi@hotmail.com

Departamento de Matemáticas, Facultad de Ciencias, Universidad de Oriente, Cumaná, Venezuela

E-mail address: ccarpi@sucre.edu.udo.ve