On congruences of Jacobi forms
HTML articles powered by AMS MathViewer
- by Olav K. Richter
- Proc. Amer. Math. Soc. 136 (2008), 2729-2734
- DOI: https://doi.org/10.1090/S0002-9939-08-09274-5
- Published electronically: April 15, 2008
- PDF | Request permission
Abstract:
We consider congruences and filtrations of Jacobi forms. More specifically, we extend Tate’s theory of theta cycles to Jacobi forms, which allows us to prove a criterion for an analog of Atkin’s $U$-operator applied to a Jacobi form to be nonzero modulo a prime.References
- Scott Ahlgren and Ken Ono, Arithmetic of singular moduli and class polynomials, Compos. Math. 141 (2005), no. 2, 293–312. MR 2134268, DOI 10.1112/S0010437X04001198
- Masataka Chida and Masanobu Kaneko, On ordinary primes for modular forms and the theta operator, Proc. Amer. Math. Soc. 135 (2007), no. 4, 1001–1005. MR 2262900, DOI 10.1090/S0002-9939-06-08561-3
- Youngju Choie and Wolfgang Eholzer, Jacobi forms and generalized RC-algebras, Rocky Mountain J. Math. 31 (2001), no. 4, 1265–1275. MR 1895295, DOI 10.1216/rmjm/1021249440
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Noam Elkies, Ken Ono, and Tonghai Yang, Reduction of CM elliptic curves and modular function congruences, Int. Math. Res. Not. 44 (2005), 2695–2707. MR 2181309, DOI 10.1155/IMRN.2005.2695
- P. Guerzhoy, On $U(p)$-congruences, Proc. Amer. Math. Soc. 135 (2007), no. 9, 2743–2746. MR 2317947, DOI 10.1090/S0002-9939-07-08816-8
- Naomi Jochnowitz, A study of the local components of the Hecke algebra mod $l$, Trans. Amer. Math. Soc. 270 (1982), no. 1, 253–267. MR 642340, DOI 10.1090/S0002-9947-1982-0642340-0
- Masanobu Kaneko and Don Zagier, A generalized Jacobi theta function and quasimodular forms, The moduli space of curves (Texel Island, 1994) Progr. Math., vol. 129, Birkhäuser Boston, Boston, MA, 1995, pp. 165–172. MR 1363056, DOI 10.1007/978-1-4612-4264-2_{6}
- Toshiya Kawai and K\B{o}ta Yoshioka, String partition functions and infinite products, Adv. Theor. Math. Phys. 4 (2000), no. 2, 397–485. MR 1838446, DOI 10.4310/ATMP.2000.v4.n2.a7
- Ken Ono, The web of modularity: arithmetic of the coefficients of modular forms and $q$-series, CBMS Regional Conference Series in Mathematics, vol. 102, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 2004. MR 2020489
- S. Ramanujan, On certain arithmetical functions, Trans. Camb. Phil. Soc. 22 (1916), 159–184 (Collected Papers, No. 18).
- O. Richter, The action of the heat operator on Jacobi forms, to appear in the Proceedings of the AMS.
- Jean-Pierre Serre, Formes modulaires et fonctions zêta $p$-adiques, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 191–268 (French). MR 0404145
- Adriana Sofer, $p$-adic aspects of Jacobi forms, J. Number Theory 63 (1997), no. 2, 191–202. MR 1443756, DOI 10.1006/jnth.1997.2095
- H. P. F. Swinnerton-Dyer, On $l$-adic representations and congruences for coefficients of modular forms, Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) Lecture Notes in Math., Vol. 350, Springer, Berlin, 1973, pp. 1–55. MR 0406931
Bibliographic Information
- Olav K. Richter
- Affiliation: Department of Mathematics, University of North Texas, Denton, Texas 76203
- ORCID: 0000-0003-3886-0893
- Email: richter@unt.edu
- Received by editor(s): June 25, 2007
- Published electronically: April 15, 2008
- Communicated by: Ken Ono
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 2729-2734
- MSC (2000): Primary 11F50; Secondary 11F60
- DOI: https://doi.org/10.1090/S0002-9939-08-09274-5
- MathSciNet review: 2399034