THE PROJECTIVE π-CHARACTER BOUNDS THE ORDER OF A π-BASE

ISTVÁN JUHÁSZ AND ZOLTÁN SZENTMIKLÓSSY

(Communicated by Alexander N. Dranishnikov)

Abstract. All spaces below are Tychonov. We define the projective π-character $p\pi\chi(X)$ of a space X as the supremum of the values $\pi\chi(Y)$ where Y ranges over all (Tychonov) continuous images of X. Our main result says that every space X has a π-base whose order is $\leq p\pi\chi(X)$; that is, every point in X is contained in at most $p\pi\chi(X)$-many members of the π-base. Since $p\pi\chi(X) \leq t(X)$ for compact X, this is a significant generalization of a celebrated result of Shapirovskii.

Let us start by recalling a few definitions and basic facts. A π-base B of a space X (resp. a local π-base at a point $x \in X$) is a family of non-empty open sets such that every non-empty open set (resp. every neighbourhood of x) includes some member of B. The π-weight $\pi(X)$ of X is the smallest infinite cardinal such that X has a π-base of at most that cardinality. The π-character $\pi\chi(x, X)$ of x in X is the smallest cardinality of a local π-base at $x \in X$, and

$$\pi\chi(X) = \sup\{\pi\chi(x, X) : x \in X\}$$

is the π-character of the space X. Finally, the local tightness at $x \in X$ is the smallest cardinal κ such that if x belongs to the closure \overline{A} of a set A, then there is $B \subset A$ with $|B| \leq \kappa$ and $x \in \overline{B}$; moreover

$$t(X) = \sup\{t(x, X) : x \in X\}$$

is the tightness of the space X.

Shapirovskii proved the following two important results concerning these cardinal functions for compacta: If X is compact, then $\pi\chi(X) \leq t(X)$. Moreover X has a π-base B of order $\leq t(X)$; i.e. every point of X is contained in at most $t(X)$-many members of B. (A trivial consequence is that if $t(X)^+ \leq t(X)$—i.e. among $t(X)^+$-many open sets there are always $t(X)^+$-many with non-empty intersection—then X has a π-base of cardinality at most $t(X)$.) The first result was proved in [5], and alternative proofs were given in [1] and [3]. The second result first appeared in [5] and then in [8]. A very short and elegant new proof (using a variant of Shapirovskii’s “algebraic” approach to free sequences) was presented in [9].

Arhangel’skii has recently introduced in [2] the concept of a space of countable projective π-character and noticed that any compact space of countable tightness...
has countable projective π-character. Then he showed that a compact space of countable projective π-character that has ω_1 as a caliber is separable (or equivalently, has a countable π-base), thereby strengthening the above consequence of Shapirovskii’s result for countably tight compacta.

In this paper we introduce the general concept of projective π-character and give the following significant generalization of Shapirovskii’s full result: Any Tychonov space has a π-base of order at most the projective π-character of the space. Not only is this result stronger for compacta, because it replaces tightness with projective π-character that is smaller, but somewhat surprisingly it extends to all Tychonov spaces.

Let φ be any cardinal function defined on a class \mathcal{C} of topological spaces. We define the projective version $p\varphi$ of φ on \mathcal{C} as follows. For any $X \in \mathcal{C}$ we let $p\varphi(X)$ be the supremum of the values $\varphi(Y)$ where Y ranges over all continuous images of X belonging to \mathcal{C}. In particular, we shall consider the case in which $\varphi = \pi X$, the π-character defined on the class of Tychonov spaces. It is easy to show then that a Tychonov space X has countable projective π-character in the sense of [2] if $p\pi(X) \leq \omega$.

Also, as was already mentioned, if X is compact Hausdorff, then we have $p\pi(X) \leq t(X)$. In fact, this follows because $t(Y) \leq t(X)$ for any continuous image of X and, by Shapirovskii’s first result above, $\pi(X) \leq t(Y)$ for every compact Y. But are $p\pi(X)$ and $t(X)$ really different? Arhangel’skii asked more specifically if there is a compactum of countable projective π-character that is not countably tight; see [2], problem 7. Our next example yields such a compactum.

Example 1. Let X be a compactification of ω whose remainder is (homeomorphic to) the ordinal $\omega_1 + 1$. Then $p\pi(X) \leq \omega < t(X)$.

Proof. It is obvious that $t(\omega_1, X) = t(X) = \omega_1$. To see $p\pi(X) \leq \omega$, consider any continuous surjection $f : X \to Y$. If $f(\omega_1) = p$ is an isolated point in Y, then there is an $\alpha < \omega_1$ such that f is constant on the interval $[\alpha, \omega_1]$; hence Y is countable and compact and so, trivially, $\pi(Y) \leq w(Y) = \omega$.

If, however, p is not isolated, then Y has a countable dense subset S with $p \notin S$. So there is a closed G_δ set F such that $p \in F \subseteq Y \setminus S$, and again we can find an $\alpha < \omega_1$ such that $f[\alpha, \omega_1] \subseteq F$. But then $G = Y \setminus F$ is countable and dense open in Y; moreover $w(G) = \omega$ because every countable and locally compact space is second countable. So we have $\pi(Y) \leq \pi(Y) = w(Y) = \omega$. \qed

We recall from [3] that $\pi sw(X)$ denotes the π-separating weight of a space X, that is, the minimum order of a π-base of X; see p. 74 of [3].

With this we may now formulate our main result as follows.

Theorem 2. For any Tychonov space X we have $\pi sw(X) \leq p\pi(X)$. In particular, any Tychonov space of countable projective π-character has a point-countable π-base.

Our proof of Theorem 2 will go along similar lines as Shapirovskii’s proof of the weaker result $\pi sw(X) \leq t(X)$ for compact spaces. The main idea of that was to show that the compactum X admits an irreducible map onto a subspace of the $\Sigma(t(X))$-power of the unit interval. The role of irreducible maps in our proof will be played by a new, more general, type of maps that we shall call π-irreducible. So we shall first define and deal with these maps. (The referee has pointed out to us that [3] is an excellent source concerning Shapirovskii’s original method.)
Definition 3. Let f be a continuous map of X onto Y. We say that the map f is π-irreducible if for every proper closed subset $F \subset X$ its image $f[F]$ is not dense in Y.

Clearly, an onto map f is π-irreducible iff the f-image of a non-dense set is non-dense. Also, it is obvious that a closed map is π-irreducible iff it is irreducible; consequently the two concepts coincide for maps between compact Hausdorff spaces.

The following proposition will be used in the proof of Theorem 2 and explains our terminology.

Proposition 4. Let f be a continuous map of X onto Y. Then the following five statements are equivalent:

1. f is π-irreducible;
2. for every π-base \mathcal{B} of X and for every $B \in \mathcal{B}$ the f-image of its complement, $f[X \setminus B]$, is not dense in Y;
3. there is a π-base \mathcal{B} of X such that for every $B \in \mathcal{B}$ the f-image $f[X \setminus B]$ is not dense in Y;
4. for every π-base \mathcal{C} of Y the family $\{f^{-1}(C) : C \in \mathcal{C}\}$ is a π-base of X;
5. there is a π-base \mathcal{C} of Y such that $\{f^{-1}(C) : C \in \mathcal{C}\}$ is a π-base of X.

Proof. We shall show (3)\Rightarrow(4) and (5)\Rightarrow(1) only because the other three implications of the cycle are trivial.

So, let \mathcal{B} be as in (3) and \mathcal{C} be any π-base of Y. For every non-empty open set U in X choose $B \in \mathcal{B}$ with $B \subset U$. Then there is a $C \in \mathcal{C}$ such that $C \cap f[X \setminus B] = \emptyset$, and hence $f^{-1}(C) \subset B \subset U$.

Now, let \mathcal{C} be as in (5) and F be a proper closed subset of X. Then there is a $C \in \mathcal{C}$ with $F \cap f^{-1}(C) = \emptyset$; consequently we have $f[F] \cap C = \emptyset$ and so $f[F]$ is not dense in Y. \hfill \square

Corollary 5. If $f : X \to Y$ is π-irreducible, then $\pi(X) = \pi(Y)$.

Proof. $\pi(X) \leq \pi(Y)$ is immediate from part (4) of Proposition 4. To see $\pi(X) \geq \pi(Y)$ first note that for any non-empty open $U \subset X$ the interior of $f[U]$ in Y is non-empty. So for any π-base \mathcal{B} of X the family $\{\text{Int}_Y(f[B]) : B \in \mathcal{B}\}$ is a π-base of Y. Indeed, this is because if V is non-empty open in Y and $B \in \mathcal{B}$ with $B \subset f^{-1}(V)$, then $f[B] \subset V$. \hfill \square

We now consider another key ingredient of the proof of our main result: certain specially embedded subspaces of Tychonov cubes. As usual, we shall denote the unit interval $[0, 1]$ by I. The members of the Tychonov cube I^κ will be construed as functions from κ to I. So if $x \in I^\kappa$ and $\alpha < \kappa$, then $x \upharpoonright \alpha$ is the projection of x to the subproduct I^α.

Definition 6. We say that $Y \subset I^\kappa$ is 0-embedded in the Tychonov cube I^κ if

$$\{y \upharpoonright \alpha : y \in Y \text{ and } y(\alpha) = 0\}$$

is dense in the projection $Y \upharpoonright \alpha = \{y \upharpoonright \alpha : y \in Y\}$ for every $\alpha < \kappa$.

We now present two results concerning 0-embedded subspaces of Tychonov cubes which will be crucial in the proof of our main theorem and are also interesting in themselves.
Theorem 7. Assume that Y is 0-embedded in the Tychonov cube I^κ where κ is a regular cardinal and $y \in Y$ is such that $y(\alpha) > 0$ for all $\alpha < \kappa$. Then $\pi \chi(y, Y) = \kappa$.

Proof. Of course, only $\pi \chi(y, Y) \geq \kappa$ needs to be proven. To see this, let U be any family of elementary open sets in I^κ such that $|U| < \kappa$ and $U \cap Y \neq \emptyset$ for all $U \in U$. Every elementary open set $U \in U$ is supported by a finite subset of κ; hence the regularity of κ implies the existence of an ordinal $\alpha < \kappa$ such that the support of each $U \in U$ is included in α.

Since Y is 0-embedded in I^κ, this implies that for every $U \in U$ we may pick a point $y_U \in U \cap Y$ such that $y_U(\alpha) = 0$. But then $y(\alpha) > 0$ clearly implies that the point y is not in the closure of the set $\{y_U : U \in U\}$; consequently U cannot be a local π-base at y in Y, completing the proof. \(\square\)

From Theorem 7, we can immediately obtain the following useful corollary about the projective π-character of 0-embedded subspaces of Tychonov cubes.

Corollary 8. If Y is 0-embedded in the Tychonov cube I^κ, then for every non-isolated point $y \in Y$ we have

$$p \pi \chi(Y) \geq \left| \{\alpha : y(\alpha) > 0\} \right|,$$

and if $y \in Y$ is isolated, then $\{\alpha : y(\alpha) > 0\}$ is finite.

Our next result shows that every Tychonov space admits a π-irreducible map onto a suitable 0-embedded subspace of a Tychonov cube.

Theorem 9. Let X be any Tychonov space of π-weight $\pi(X) = \kappa$. Then there is a π-irreducible map f of X onto a 0-embedded subspace Y of the Tychonov cube I^κ.

Proof. To begin with, let us choose a π-base \mathcal{B} of X with $|\mathcal{B}| = \kappa$ and fix a well-ordering \prec of \mathcal{B} of order-type κ.

We shall define by transfinite induction on $\alpha < \kappa$ the co-ordinate maps $g_\alpha = p_\alpha \circ f : X \to I$, where $p_\alpha(y) = y(\alpha)$ is the αth co-ordinate projection, and sets $B_\alpha \in \mathcal{B}$. So assume that $\alpha < \kappa$ and for all $\beta < \alpha$ the maps $g_\beta : X \to I$ and the sets $B_\beta \in \mathcal{B}$ have been defined.

Let $f_\alpha : X \to I^\kappa$ be the map whose βth co-ordinate map is g_β for all $\beta < \alpha$ and set $Y_\alpha = f_\alpha[X]$. Then, in view of Corollary 5, the map $f_\alpha : X \to Y_\alpha$ cannot be π-irreducible because $\pi(Y_\alpha) < \kappa = \pi(X)$; hence using part (2) of Proposition 4 there is a member $B \in \mathcal{B}$ for which $f_\alpha[X \setminus B]$ is dense in Y_α. Let B_α be the \prec-first such member of \mathcal{B}. We then define $g_\alpha : X \to I$ as any continuous function that is identically 0 on $X \setminus B_\alpha$ and takes the value 1 at some point in B_α. As was intended, with the induction completed we let $f : X \to Y^\kappa$ be the unique map having the g_α for $\alpha < \kappa$ as its co-ordinate functions and we also set $Y = f[X]$.

Note first that if $\beta < \alpha$, then $B_\beta \prec B_\alpha$. Indeed, since we have $Y_\beta = Y_\alpha \upharpoonright \beta$, the density of $f_\alpha[X \setminus B_\alpha]$ in Y_α implies that $f_\beta[X \setminus B_\alpha]$ is dense in Y_β; hence $B_\alpha \prec B_\beta$ would contradict the choice of B_β. Moreover, by our construction, $f_{\beta+1}[X \setminus B_\beta]$ is not dense in $Y_{\beta+1}$ and consequently $f_\alpha[X \setminus B_\beta]$ is not dense in Y_α, which implies $B_\alpha \neq B_\beta$.

Since \mathcal{B} is of order type κ under \prec, it follows from this that for every $B \in \mathcal{B}$ there is an $\alpha < \kappa$ with $B \prec B_\alpha$. But then, by the choice of B_α, we have that $f_\alpha[X \setminus B]$ is not dense in $Y_\alpha = Y \upharpoonright \alpha$ and hence $f[X \setminus B]$ cannot be dense in Y. Using part (3) of Proposition 4 implies that f is indeed a π-irreducible map of X onto Y.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Finally, by our construction, for every $\alpha < \kappa$ the image $f_\alpha[X \setminus B_\alpha]$ is dense in $Y_\alpha = Y \setminus \{\alpha\}$; moreover we have
\[f_\alpha[X \setminus B_\alpha] \subset \{y \mid \alpha \in Y \text{ and } y(\alpha) = 0\}, \]
and consequently Y is indeed 0-embedded in I^κ. \hfill \square

Let us now recall that the kth Σ_λ-power of I, denoted by $\Sigma_\lambda(I, \kappa)$, is the subspace of I^κ consisting of all points whose support is of size at most λ. The support of a point $y \in I^\kappa$ is the set $\{\alpha < \kappa : y(\alpha) > 0\}$. Thus, from Theorem 9 and from Corollary 8—moreover from the trivial fact that $p\pi\chi(Y) \leq p\pi\chi(X)$ if Y is any continuous image of X—we immediately obtain the following result.

Corollary 10. If X is a Tychonov space such that $\pi(X) = \kappa$ and $p\pi\chi(X) = \lambda$, then some π-irreducible image Y of X embeds into $\Sigma_\lambda(I, \kappa)$.

This corollary is clearly a strengthening of the following result of Shapirovskii from [6] (see also 3.22 of [3]): If X is compact Hausdorff, then some irreducible image of X embeds into $\Sigma_{\pi\chi(X)}$-power of I.

The proof of our main theorem, Theorem 2, can now be easily established by recalling the following result of Shapirovskii from [6] (see also 3.24).

Theorem (Shapirovskii). If the space Y embeds into a Σ_λ-power of I, then $\pi_{sw}(Y) \leq \lambda$.

Proof of Theorem 2. Now, to prove Theorem 2 consider any non-discrete Tychonov space X. By Corollary 10 then X has a π-irreducible image Y that embeds into a Σ_λ-power of I, where $\lambda = p\pi\chi(X)$. By the previous theorem of Shapirovskii the space Y has a π-base C of order at most λ. But by part (4) of Proposition 4 $\{f^{-1}(C) : C \in C\}$ is a π-base of X that clearly has the same order as C.

The following result is then an immediate consequence of Theorem 2.

Corollary 11. Let X be any Tychonov space and $\kappa > p\pi\chi(X)$ be a cardinal such that κ is a caliber of X. Then $\pi(X) < \kappa$.

Since $t(X) \geq p\pi\chi(X)$ for a compact Hausdorff space X, this corollary implies Shapirovskii’s theorem saying that if $t(X)^+$ is a caliber of such a space X, then $\pi(X) \leq t(X)$. Moreover, it also extends from compacta to all Tychonov spaces Arhangel’skii’s result from [2] saying that spaces of countable projective π-character and having ω_1 as a caliber are separable.

Let us conclude by pointing out that neither Theorem 2 nor Corollary 11 remain valid if the projective π-character $p\pi\chi$ is replaced by the simple π-character $\pi\chi$ in them. In fact, it has recently been shown in [3] that there are even first countable spaces whose π-separating weight is as large as you wish. Moreover, in the same paper it was also shown that it is consistent to have first countable spaces with caliber ω_1 which have uncountable π-weight (or equivalently, density). However, since first countability implies countable tightness, none of these examples are (or could be) compact, so the following intriguing questions remain open.

Problem 12. Let X be a compact Hausdorff space of countable π-character. Does X have a point-countable π-base? If, in addition, ω_1 is a caliber of X, is X then separable?
References

Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, POB 127, Budapest, H-1364 Hungary

E-mail address: juhasz@renyi.hu

Department of Analysis, Eötvös Loránt University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary

E-mail address: zoli@renyi.hu