An elementary approach to several results on the Hardy-Littlewood maximal operator
HTML articles powered by AMS MathViewer
- by Andrei K. Lerner
- Proc. Amer. Math. Soc. 136 (2008), 2829-2833
- DOI: https://doi.org/10.1090/S0002-9939-08-09318-0
- Published electronically: April 2, 2008
- PDF | Request permission
Abstract:
We give new elementary proofs of theorems due to B. Muckenhoupt, B. Jawerth, and S. Buckley. By means of our approach we answer a question raised by J. Orobitg and C. Pérez.References
- Stephen M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253–272. MR 1124164, DOI 10.1090/S0002-9947-1993-1124164-0
- Michael Christ and Robert Fefferman, A note on weighted norm inequalities for the Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc. 87 (1983), no. 3, 447–448. MR 684636, DOI 10.1090/S0002-9939-1983-0684636-9
- R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241–250. MR 358205, DOI 10.4064/sm-51-3-241-250
- José García-Cuerva and José L. Rubio de Francia, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, vol. 116, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 104. MR 807149
- Miguel de Guzmán, Differentiation of integrals in $R^{n}$, Lecture Notes in Mathematics, Vol. 481, Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba, and Robert Fefferman, and two by Roberto Moriyón. MR 0457661
- R. A. Hunt, D. S. Kurtz, and C. J. Neugebauer, A note on the equivalence of $A_{p}$ and Sawyer’s condition for equal weights, Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981) Wadsworth Math. Ser., Wadsworth, Belmont, CA, 1983, pp. 156–158. MR 730066
- Björn Jawerth, Weighted inequalities for maximal operators: linearization, localization and factorization, Amer. J. Math. 108 (1986), no. 2, 361–414. MR 833361, DOI 10.2307/2374677
- Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226. MR 293384, DOI 10.1090/S0002-9947-1972-0293384-6
- Joan Orobitg and Carlos Pérez, $A_p$ weights for nondoubling measures in $\textbf {R}^n$ and applications, Trans. Amer. Math. Soc. 354 (2002), no. 5, 2013–2033. MR 1881028, DOI 10.1090/S0002-9947-02-02922-7
- Eric T. Sawyer, A characterization of a two-weight norm inequality for maximal operators, Studia Math. 75 (1982), no. 1, 1–11. MR 676801, DOI 10.4064/sm-75-1-1-11
- Peter Sjögren, A remark on the maximal function for measures in $\textbf {R}^{n}$, Amer. J. Math. 105 (1983), no. 5, 1231–1233. MR 714775, DOI 10.2307/2374340
- Peter Sjögren and Fernando Soria, Sharp estimates for the non-centered maximal operator associated to Gaussian and other radial measures, Adv. Math. 181 (2004), no. 2, 251–275. MR 2026859, DOI 10.1016/S0001-8708(03)00050-1
- Ana M. Vargas, On the maximal function for rotation invariant measures in $\textbf {R}^n$, Studia Math. 110 (1994), no. 1, 9–17. MR 1279371, DOI 10.4064/sm-110-1-9-17
Bibliographic Information
- Andrei K. Lerner
- Affiliation: Department of Mathematics, Bar-Ilan University, 52900 Ramat Gan, Israel
- Address at time of publication: Departamento de Análisis Matemático, Facultad de Matemáticas, Universidad de Sevilla, 41080 Sevilla, Spain
- MR Author ID: 615118
- Email: aklerner@netvision.net.il
- Received by editor(s): January 29, 2007
- Published electronically: April 2, 2008
- Additional Notes: This work was supported by research grant SB2004-0169 from the Ministerio de Educación y Ciencia (Spain).
- Communicated by: Michael T. Lacey
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 2829-2833
- MSC (2000): Primary 42B25
- DOI: https://doi.org/10.1090/S0002-9939-08-09318-0
- MathSciNet review: 2399047