An ultrametric version of the Maillet-Malgrange theorem for nonlinear $q$-difference equations
HTML articles powered by AMS MathViewer
- by Lucia Di Vizio
- Proc. Amer. Math. Soc. 136 (2008), 2803-2814
- DOI: https://doi.org/10.1090/S0002-9939-08-09352-0
- Published electronically: March 21, 2008
- PDF | Request permission
Abstract:
We prove an ultrametric $q$-difference version of the Maillet- Malgrange theorem on the Gevrey nature of formal solutions of nonlinear analytic $q$-difference equations. Since $\deg _q$ and ${ord}_q$ define two valuations on $\mathbb {C}(q)$, we obtain, in particular, a result on the growth of the degree in $q$ and the order at $q$ of formal solutions of nonlinear $q$-difference equations, when $q$ is a parameter. We illustrate the main theorem by considering two examples: a $q$-deformation of “Painlevé II”, for the nonlinear situation, and a $q$-difference equation satisfied by the colored Jones polynomials of the figure $8$ knots, in the linear case.
We also consider a $q$-analog of the Maillet-Malgrange theorem, both in the complex and in the ultrametric setting, under the assumption that $|q|=1$ and a classical diophantine condition.
References
- Norbert A’Campo, Théorème de préparation différentiable ultra-métrique, Séminaire Delange-Pisot-Poitou: 1967/68, Théorie des Nombres, Fasc. 1-2, Secrétariat mathématique, Paris, 1969, pp. Exp. 17, 7. MR 0244240
- Jean-Paul Bézivin and Abdelbaki Boutabaa, Sur les équations fonctionelles $p$-adiques aux $q$-différences, Collect. Math. 43 (1992), no. 2, 125–140 (French, with English summary). MR 1223416
- Jean-Paul Bézivin, Convergence des solutions formelles de certaines équations fonctionnelles, Aequationes Math. 44 (1992), no. 1, 84–99 (French, with English summary). MR 1165786, DOI 10.1007/BF01834207
- Jean-Paul Bézivin, Sur les équations fonctionnelles aux $q$-différences, Aequationes Math. 43 (1992), no. 2-3, 159–176 (French, with English summary). MR 1158724, DOI 10.1007/BF01835698
- D. Cooper, M. Culler, H. Gillet, D. D. Long, and P. B. Shalen, Plane curves associated to character varieties of $3$-manifolds, Invent. Math. 118 (1994), no. 1, 47–84. MR 1288467, DOI 10.1007/BF01231526
- Lucia Di Vizio, Arithmetic theory of $q$-difference equations: the $q$-analogue of Grothendieck-Katz’s conjecture on $p$-curvatures, Invent. Math. 150 (2002), no. 3, 517–578. MR 1946552, DOI 10.1007/s00222-002-0241-z
- Lucia Di Vizio. Local analytic classification of $q$-difference equations with $|q|=1$. arXiv:0802.4223
- L. Di Vizio, J.-P. Ramis, J. Sauloy, and C. Zhang, Équations aux $q$-différences, Gaz. Math. 96 (2003), 20–49 (French). MR 1988639
- Monique Fleinert-Jensen, Théorèmes d’indices précisés et convergences des solutions pour une équation linéaire aux $q$-différences, C. R. Acad. Sci. Paris Sér. I Math. 321 (1995), no. 4, 425–428 (French, with English and French summaries). MR 1351090
- Stavros Garoufalidis, On the characteristic and deformation varieties of a knot, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 291–309. MR 2172488, DOI 10.2140/gtm.2004.7.291
- K. Kajiwara, T. Masuda, M. Noumi, Y. Ohta, and Y. Yamada, Construction of hypergeometric solutions to the $q$-Painlevé equations, Int. Math. Res. Not. 24 (2005), 1441–1463. MR 2153786, DOI 10.1155/IMRN.2005.1439
- Edmond Maillet. Sur les séries divergentes et les équations différentielles. Annales Scientifiques de l’École Normale Supérieure. Troisième Série, 20, 1903.
- Bernard Malgrange, Sur le théorème de Maillet, Asymptotic Anal. 2 (1989), no. 1, 1–4 (French). MR 991413
- Fabienne Naegele, Théorèmes d’indices pour les équations $q$-différences-différentielles, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 6, 579–582 (French, with English and French summaries). MR 1240803
- J.-P. Ramis, Dévissage Gevrey, Journées Singulières de Dijon (Univ. Dijon, Dijon, 1978) Astérisque, vol. 59, Soc. Math. France, Paris, 1978, pp. 4, 173–204 (French, with English summary). MR 542737
- A. Ramani, B. Grammaticos, T. Tamizhmani, and K. M. Tamizhmani, Special function solutions of the discrete Painlevé equations, Comput. Math. Appl. 42 (2001), no. 3-5, 603–614. Advances in difference equations, III. MR 1838017, DOI 10.1016/S0898-1221(01)00180-8
- Jean-Pierre Serre, Lie algebras and Lie groups, Lecture Notes in Mathematics, vol. 1500, Springer-Verlag, Berlin, 2006. 1964 lectures given at Harvard University; Corrected fifth printing of the second (1992) edition. MR 2179691
- Yasutaka Sibuya and Steven Sperber, Convergence of power series solutions of $p$-adic nonlinear differential equation, Recent advances in differential equations (Trieste, 1978) Academic Press, New York-London, 1981, pp. 405–419. MR 643150
- Yasutaka Sibuya and Steven Sperber, Some new results on power-series solutions of algebraic differential equations, Singular perturbations and asymptotics (Proc. Adv. Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1980) Publ. Math. Res. Center Univ. Wisconsin, vol. 45, Academic Press, New York-London, 1980, pp. 379–404. MR 606047
- Yasutaka Sibuya and Steven Sperber, Arithmetic properties of power series solutions of algebraic differential equations, Ann. of Math. (2) 113 (1981), no. 1, 111–157. MR 604044, DOI 10.2307/1971135
- Changgui Zhang, Sur un théorème du type de Maillet-Malgrange pour les équations $q$-différences-différentielles, Asymptot. Anal. 17 (1998), no. 4, 309–314 (French, with English and French summaries). MR 1656811
Bibliographic Information
- Lucia Di Vizio
- Affiliation: Institut de Mathématiques de Jussieu, Topologie et géométrie algébriques, Case 7012, 2, place Jussieu, 75251 Paris Cedex 05, France
- MR Author ID: 674036
- Email: divizio@math.jussieu.fr
- Received by editor(s): November 13, 2006
- Published electronically: March 21, 2008
- Communicated by: Carmen C. Chicone
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 2803-2814
- MSC (2000): Primary 33E99, 39A13
- DOI: https://doi.org/10.1090/S0002-9939-08-09352-0
- MathSciNet review: 2399044