A lower bound for the density of states of the lattice Anderson model
HTML articles powered by AMS MathViewer
- by Peter D. Hislop and Peter Müller
- Proc. Amer. Math. Soc. 136 (2008), 2887-2893
- DOI: https://doi.org/10.1090/S0002-9939-08-09361-1
- Published electronically: April 14, 2008
- PDF | Request permission
Abstract:
We consider the Anderson model on the multi-dimensional cubic lattice and prove a positive lower bound on the density of states under certain conditions. For example, if the random variables are independently and identically distributed and the probability measure has a bounded Lebesgue density with compact support, and if this density is essentially bounded away from zero on its support, then we prove that the density of states is strictly positive for Lebesgue-almost every energy in the deterministic spectrum.References
- Michael Aizenman and Stanislav Molchanov, Localization at large disorder and at extreme energies: an elementary derivation, Comm. Math. Phys. 157 (1993), no. 2, 245–278. MR 1244867
- René Carmona and Jean Lacroix, Spectral theory of random Schrödinger operators, Probability and its Applications, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1102675, DOI 10.1007/978-1-4612-4488-2
- J.-M. Combes and P. D. Hislop, Localization for some continuous, random Hamiltonians in $d$-dimensions, J. Funct. Anal. 124 (1994), no. 1, 149–180. MR 1284608, DOI 10.1006/jfan.1994.1103
- Jean-Michel Combes, Peter D. Hislop, and Frédéric Klopp, An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators, Duke Math. J. 140 (2007), no. 3, 469–498. MR 2362242, DOI 10.1215/S0012-7094-07-14032-8
- Werner Fischer, Thomas Hupfer, Hajo Leschke, and Peter Müller, Existence of the density of states for multi-dimensional continuum Schrödinger operators with Gaussian random potentials, Comm. Math. Phys. 190 (1997), no. 1, 133–141. MR 1484550, DOI 10.1007/s002200050236
- Thomas Hupfer, Hajo Leschke, Peter Müller, and Simone Warzel, The absolute continuity of the integrated density of states for magnetic Schrödinger operators with certain unbounded random potentials, Comm. Math. Phys. 221 (2001), no. 2, 229–254. MR 1845322, DOI 10.1007/s002200100467
- F. Jeske, Über lokale Positivität der Zustandsdichte zufälliger Schrödinger-Operatoren, Ph.D. thesis, Ruhr-Universität Bochum, Germany, 1992 [in German].
- Werner Kirsch, Small perturbations and the eigenvalues of the Laplacian on large bounded domains, Proc. Amer. Math. Soc. 101 (1987), no. 3, 509–512. MR 908658, DOI 10.1090/S0002-9939-1987-0908658-9
- Werner Kirsch, The stability of the density of states of Schrödinger operator under very small perturbations, Integral Equations Operator Theory 12 (1989), no. 3, 383–391. MR 998279, DOI 10.1007/BF01235738
- Werner Kirsch and Bernd Metzger, The integrated density of states for random Schrödinger operators, Spectral theory and mathematical physics: a Festschrift in honor of Barry Simon’s 60th birthday, Proc. Sympos. Pure Math., vol. 76, Amer. Math. Soc., Providence, RI, 2007, pp. 649–696. MR 2307751, DOI 10.1090/pspum/076.2/2307751
- Werner Kirsch and Peter Müller, Spectral properties of the Laplacian on bond-percolation graphs, Math. Z. 252 (2006), no. 4, 899–916. MR 2206633, DOI 10.1007/s00209-005-0895-5
- Nariyuki Minami, Local fluctuation of the spectrum of a multidimensional Anderson tight binding model, Comm. Math. Phys. 177 (1996), no. 3, 709–725. MR 1385082
- S. A. Molčanov, The local structure of the spectrum of the one-dimensional Schrödinger operator, Comm. Math. Phys. 78 (1980/81), no. 3, 429–446. MR 603503
- Leonid Pastur and Alexander Figotin, Spectra of random and almost-periodic operators, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 297, Springer-Verlag, Berlin, 1992. MR 1223779, DOI 10.1007/978-3-642-74346-7
- Barry Simon, Lifschitz tails for the Anderson model, J. Statist. Phys. 38 (1985), no. 1-2, 65–76. MR 784931, DOI 10.1007/BF01017848
- Ivan Veselić, Integrated density of states and Wegner estimates for random Schrödinger operators, Spectral theory of Schrödinger operators, Contemp. Math., vol. 340, Amer. Math. Soc., Providence, RI, 2004, pp. 97–183. MR 2051995, DOI 10.1090/conm/340/06116
- Franz Wegner, Bounds on the density of states in disordered systems, Z. Phys. B 44 (1981), no. 1-2, 9–15. MR 639135, DOI 10.1007/BF01292646
Bibliographic Information
- Peter D. Hislop
- Affiliation: Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506-0027
- MR Author ID: 86470
- ORCID: 0000-0003-3693-0667
- Email: hislop@ms.uky.edu
- Peter Müller
- Affiliation: Institut für Theoretische Physik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- Address at time of publication: Mathematisches Institut Ludwig-Maximilians-Universität, Theresienstr. 39, 80333, München, Germany
- Email: peter.mueller@physik.uni-goe.de
- Received by editor(s): May 11, 2007
- Published electronically: April 14, 2008
- Communicated by: Walter Craig
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 2887-2893
- MSC (2000): Primary 47B80, 35P15, 81Q10
- DOI: https://doi.org/10.1090/S0002-9939-08-09361-1
- MathSciNet review: 2399055
Dedicated: Dedicated to Jean-Michel Combes on the occasion of his 65$^{\mbox {th}}$ birthday