Local automorphisms of the Hilbert ball
HTML articles powered by AMS MathViewer
- by Bernhard Lamel
- Proc. Amer. Math. Soc. 136 (2008), 2815-2822
- DOI: https://doi.org/10.1090/S0002-9939-08-09440-9
- Published electronically: April 14, 2008
- PDF | Request permission
Abstract:
Every holomorphic mapping which takes a piece of the boundary of the unit ball in complex Hilbert space into the boundary of the unit ball and whose differential at some point of this boundary is onto is the restriction of an automorphism of the ball. We also show that it is enough to assume that the mapping is only Gâteaux-holomorphic.References
- H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249–256. MR 352531, DOI 10.1007/BF01351851
- M. S. Baouendi, P. Ebenfelt, and Linda Preiss Rothschild, Parametrization of local biholomorphisms of real analytic hypersurfaces, Asian J. Math. 1 (1997), no. 1, 1–16. MR 1480988, DOI 10.4310/AJM.1997.v1.n1.a1
- M. S. Baouendi, P. Ebenfelt, and Linda Preiss Rothschild, Local geometric properties of real submanifolds in complex space, Bull. Amer. Math. Soc. (N.S.) 37 (2000), no. 3, 309–336. MR 1754643, DOI 10.1090/S0273-0979-00-00863-6
- Seán Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics, Springer-Verlag London, Ltd., London, 1999. MR 1705327, DOI 10.1007/978-1-4471-0869-6
- André Renaud, Quelques propriétés des applications analytiques d’une boule de dimension infinie dans une autre, Bull. Sci. Math. (2) 97 (1973), 129–159 (1974) (French). MR 338455
Bibliographic Information
- Bernhard Lamel
- Affiliation: Fakultät für Mathematik, Universität Wien, Nordbergstrasse 15, A-1090 Wien, Österreich
- MR Author ID: 685199
- ORCID: 0000-0002-6322-6360
- Email: bernhard.lamel@univie.ac.at
- Received by editor(s): November 21, 2006
- Published electronically: April 14, 2008
- Additional Notes: The author was supported by the Austrian Science Fund FWF, Projects P17111 and P19667
- Communicated by: Mei-Chi Shaw
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 2815-2822
- MSC (2000): Primary 32H12, 46G20, 46T25, 58C10
- DOI: https://doi.org/10.1090/S0002-9939-08-09440-9
- MathSciNet review: 2399045