Complete form of Furuta inequality
HTML articles powered by AMS MathViewer
- by Jiangtao Yuan and Zongsheng Gao
- Proc. Amer. Math. Soc. 136 (2008), 2859-2867
- DOI: https://doi.org/10.1090/S0002-9939-08-09446-X
- Published electronically: April 7, 2008
- PDF | Request permission
Abstract:
Let $A$ and $B$ be bounded linear operators on a Hilbert space satisfying $A \ge B \ge 0$. The well-known Furuta inequality is given as follows: Let $r\ge 0$ and $p> 0$; then $A^{\frac {r}{2}} A^{\min \{1,p\}} A^{\frac {r}{2}} \ge (A^{\frac {r}{2}} B^p A^{\frac {r}{2}})^{\frac {\min \{1,p\}+r}{p+r}}$. In order to give a self-contained proof of it, Furuta (1989) proved that if $1\geq r\ge 0$, $p>p_{0}> 0$ and $2p_{0}+r\geq p>p_{0}$, then $(A^{\frac {r}{2}} B^{p_{0}} A^{\frac {r}{2}})^{\frac {p+r}{p_{0}+r}} \ge (A^{\frac {r}{2}} B^p A^{\frac {r}{2}})^{\frac {p+r}{p+r}}$.
This paper aims to show a sharpening of Furuta (1989): Let $r\ge 0$, $p_{0}> 0$ and $s=\min \{p, 2p_{0}+\min \{1,r\}\}$; then $(A^{\frac {r}{2}} B^{p_{0}} A^{\frac {r}{2}})^{\frac {s+r}{p_{0}+r}} \ge (A^{\frac {r}{2}} B^p A^{\frac {r}{2}})^{\frac {s+r}{p+r}}$. We call it the complete form of Furuta inequality because the case $p_{0}=1$ of it implies the essential part ($p>1$) of Furuta inequality for $\frac {1+r}{s+r}\in (0,1]$ by the famous Löwner-Heinz inequality. Afterwards, the optimality of the outer exponent of the complete form is considered. Lastly, we give some applications of the complete form to Aluthge transformation.
References
- Ariyadasa Aluthge, On $p$-hyponormal operators for $0<p<1$, Integral Equations Operator Theory 13 (1990), no. 3, 307–315. MR 1047771, DOI 10.1007/BF01199886
- Ariyadasa Aluthge and Derming Wang, Powers of $p$-hyponormal operators, J. Inequal. Appl. 3 (1999), no. 3, 279–284. MR 1732933, DOI 10.1155/S1025583499000181
- Masatoshi Fujii, Takayuki Furuta, and Eizaburo Kamei, Furuta’s inequality and its application to Ando’s theorem, Linear Algebra Appl. 179 (1993), 161–169. MR 1200149, DOI 10.1016/0024-3795(93)90327-K
- Takayuki Furuta, $A\geq B\geq 0$ assures $(B^rA^pB^r)^{1/q}\geq B^{(p+2r)/q}$ for $r\geq 0$, $p\geq 0$, $q\geq 1$ with $(1+2r)q\geq p+2r$, Proc. Amer. Math. Soc. 101 (1987), no. 1, 85–88. MR 897075, DOI 10.1090/S0002-9939-1987-0897075-6
- Takayuki Furuta, $A\ge B\ge 0$ ensures $B^rA^pB^r\ge (B^rA^{p-s}B^r)^{(p+2r)/(p-s+2r)}$ for $1\ge 2r\ge 0,\;p\ge s\ge 0$ with $p+2r\ge 2s$, J. Operator Theory 21 (1989), no. 1, 107–115. MR 1002123
- Takayuki Furuta, Two operator functions with monotone property, Proc. Amer. Math. Soc. 111 (1991), no. 2, 511–516. MR 1045135, DOI 10.1090/S0002-9939-1991-1045135-2
- Takayuki Furuta, Furuta’s inequality and its application to the relative operator entropy, J. Operator Theory 30 (1993), no. 1, 21–30. MR 1302604
- Takayuki Furuta, Extension of the Furuta inequality and Ando-Hiai log-majorization, Linear Algebra Appl. 219 (1995), 139–155. MR 1327396, DOI 10.1016/0024-3795(93)00203-C
- Takayuki Furuta, Invitation to linear operators, Taylor & Francis Group, London, 2001. From matrices to bounded linear operators on a Hilbert space. MR 1978629, DOI 10.1201/b16820
- Tadasi Huruya, A note on $p$-hyponormal operators, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3617–3624. MR 1416089, DOI 10.1090/S0002-9939-97-04004-5
- Masatoshi Ito and Takeaki Yamazaki, Relations between two inequalities $(B^{\frac r2}A^pB^{\frac r2})^{\frac r{p+r}}\geq B^r$ and $A^p\geq (A^{\frac p2}B^rA^{\frac p2})^{\frac p{p+r}}$ and their applications, Integral Equations Operator Theory 44 (2002), no. 4, 442–450. MR 1942034, DOI 10.1007/BF01193670
- Eizaburo Kamei, A satellite to Furuta’s inequality, Math. Japon. 33 (1988), no. 6, 883–886. MR 975867
- Mircea Martin and Mihai Putinar, Lectures on hyponormal operators, Operator Theory: Advances and Applications, vol. 39, Birkhäuser Verlag, Basel, 1989. MR 1028066, DOI 10.1007/978-3-0348-7466-3
- Kôtarô Tanahashi, Best possibility of the Furuta inequality, Proc. Amer. Math. Soc. 124 (1996), no. 1, 141–146. MR 1291794, DOI 10.1090/S0002-9939-96-03055-9
- Kôtarô Tanahashi, The best possibility of the grand Furuta inequality, Proc. Amer. Math. Soc. 128 (2000), no. 2, 511–519. MR 1654088, DOI 10.1090/S0002-9939-99-05261-2
- Daoxing Xia, Spectral theory of hyponormal operators, Operator Theory: Advances and Applications, vol. 10, Birkhäuser Verlag, Basel, 1983. MR 806959, DOI 10.1007/978-3-0348-5435-1
- Masahiro Yanagida, Some applications of Tanahashi’s result on the best possibility of Furuta inequality, Math. Inequal. Appl. 2 (1999), no. 2, 297–305. MR 1681830, DOI 10.7153/mia-02-27
- Changsen Yang and Jiangtao Yuan, Extensions of the results on powers of $p$-hyponormal and log-hyponormal operators, J. Inequal. Appl. , posted on (2006), Art. ID 36919, 14. MR 2215484, DOI 10.1155/JIA/2006/36919
- Takashi Yoshino, The $p$-hyponormality of the Aluthge transform, Interdiscip. Inform. Sci. 3 (1997), no. 2, 91–93. MR 1605987, DOI 10.4036/iis.1997.91
- J. Yuan and Z. Gao, The Furuta inequality and Furuta type operator functions under chaotic order, Acta Sci. Math. (Szeged), 73 (2007), 669-681.
- Jiangtao Yuan and Zongsheng Gao, Structure on powers of $p$-hyponormal and log-hyponormal operators, Integral Equations Operator Theory 59 (2007), no. 3, 437–448. MR 2363017, DOI 10.1007/s00020-007-1524-y
- J. Yuan and Z. Gao, Classified construction of generalized Furuta type operator functions, Math. Inequal. Appl., to appear.
- Jiangtao Yuan and Changsen Yang, Powers of class $wF(p,r,q)$ operators, JIPAM. J. Inequal. Pure Appl. Math. 7 (2006), no. 1, Article 32, 9. MR 2217195
Bibliographic Information
- Jiangtao Yuan
- Affiliation: LMIB and Department of Mathematics, Beihang University, Beijing 100083, People’s Republic of China
- Email: yuanjiangtao02@yahoo.com.cn
- Zongsheng Gao
- Affiliation: LMIB and Department of Mathematics, Beihang University, Beijing 100083, People’s Republic of China
- Email: zshgao@buaa.edu.cn
- Received by editor(s): March 19, 2007
- Published electronically: April 7, 2008
- Additional Notes: This work is supported by the Innovation Foundation of Beihang University (BUAA) for PhD Graduates, the National Natural Science Fund of China (10771011), and National Key Basic Research Project of China Grant No. 2005CB321902.
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 2859-2867
- MSC (2000): Primary 47A63, 47B15, 47B20
- DOI: https://doi.org/10.1090/S0002-9939-08-09446-X
- MathSciNet review: 2399051
Dedicated: Dedicated to the 20th anniversary of the birth of the Furuta inequality