Maximal Thurston–Bennequin number of $+$adequate links
HTML articles powered by AMS MathViewer
- by Tamás Kálmán
- Proc. Amer. Math. Soc. 136 (2008), 2969-2977
- DOI: https://doi.org/10.1090/S0002-9939-08-09478-1
- Published electronically: April 7, 2008
- PDF | Request permission
Abstract:
The class of $+$adequate links contains both alternating and positive links. Generalizing results of Tanaka (for the positive case) and Ng (for the alternating case), we construct fronts of an arbitrary $+$adequate link $A$ so that the diagram has a ruling; therefore its Thurston–Bennequin number is maximal among Legendrian representatives of $A$. We derive consequences for the Kauffman polynomial and Khovanov homology of $+$adequate links.References
- Peter R. Cromwell, Knots and links, Cambridge University Press, Cambridge, 2004. MR 2107964, DOI 10.1017/CBO9780511809767
- John B. Etnyre, Legendrian and transversal knots, Handbook of knot theory, Elsevier B. V., Amsterdam, 2005, pp. 105–185. MR 2179261, DOI 10.1016/B978-044451452-3/50004-6
- John B. Etnyre and Ko Honda, Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001), no. 1, 63–120. MR 1959579
- Dmitry Fuchs, Chekanov-Eliashberg invariant of Legendrian knots: existence of augmentations, J. Geom. Phys. 47 (2003), no. 1, 43–65. MR 1985483, DOI 10.1016/S0393-0440(01)00013-4
- Louis H. Kauffman, Knots and physics, Series on Knots and Everything, vol. 1, World Scientific Publishing Co., Inc., River Edge, NJ, 1991. MR 1141156, DOI 10.1142/9789812796226
- Tamás Kálmán, Contact homology and one parameter families of Legendrian knots, Geom. Topol. 9 (2005), 2013–2078. MR 2209366, DOI 10.2140/gt.2005.9.2013
- W. B. R. Lickorish and M. B. Thistlethwaite, Some links with nontrivial polynomials and their crossing-numbers, Comment. Math. Helv. 63 (1988), no. 4, 527–539. MR 966948, DOI 10.1007/BF02566777
- Lenhard L. Ng, Maximal Thurston-Bennequin number of two-bridge links, Algebr. Geom. Topol. 1 (2001), 427–434. MR 1852765, DOI 10.2140/agt.2001.1.427
- Lenhard Ng, A Legendrian Thurston-Bennequin bound from Khovanov homology, Algebr. Geom. Topol. 5 (2005), 1637–1653. MR 2186113, DOI 10.2140/agt.2005.5.1637
- Lee Rudolph, A congruence between link polynomials, Math. Proc. Cambridge Philos. Soc. 107 (1990), no. 2, 319–327. MR 1027784, DOI 10.1017/S0305004100068584
- Dan Rutherford, Thurston-Bennequin number, Kauffman polynomial, and ruling invariants of a Legendrian link: the Fuchs conjecture and beyond, Int. Math. Res. Not. , posted on (2006), Art. ID 78591, 15. MR 2219227, DOI 10.1155/IMRN/2006/78591
- Toshifumi Tanaka, Maximal Bennequin numbers and Kauffman polynomials of positive links, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3427–3432. MR 1616601, DOI 10.1090/S0002-9939-99-04983-7
- Toshifumi Tanaka, Maximal Thurston-Bennequin numbers of alternating links, Topology Appl. 153 (2006), no. 14, 2476–2483. MR 2243727, DOI 10.1016/j.topol.2005.10.001
- Morwen B. Thistlethwaite, On the Kauffman polynomial of an adequate link, Invent. Math. 93 (1988), no. 2, 285–296. MR 948102, DOI 10.1007/BF01394334
- Yoshiyuki Yokota, Polynomial invariants of positive links, Topology 31 (1992), no. 4, 805–811. MR 1191382, DOI 10.1016/0040-9383(92)90011-6
- Yoshiyuki Yokota, The Kauffman polynomial of alternating links, Topology Appl. 65 (1995), no. 3, 229–236. MR 1357866, DOI 10.1016/0166-8641(95)00111-S
Bibliographic Information
- Tamás Kálmán
- Affiliation: Graduate School of Mathematics, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8914, Japan
- Email: kalman@ms.u-tokyo.ac.jp
- Received by editor(s): November 9, 2006
- Published electronically: April 7, 2008
- Communicated by: Daniel Ruberman
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 2969-2977
- MSC (2000): Primary 57M25; Secondary 53D12
- DOI: https://doi.org/10.1090/S0002-9939-08-09478-1
- MathSciNet review: 2399065