Critical values of set-valued maps with stratifiable graphs. Extensions of Sard and Smale-Sard theorems
HTML articles powered by AMS MathViewer
- by A. D. Ioffe
- Proc. Amer. Math. Soc. 136 (2008), 3111-3119
- DOI: https://doi.org/10.1090/S0002-9939-08-09101-6
- Published electronically: May 1, 2008
- PDF | Request permission
Abstract:
We prove three theorems extending Sard’s theorem and its infinite dimensional extension due to Smale to set-valued mappings with stratifiable graphs. The very concept of a critical value comes from (nonsmooth) variational analysis and turns out to be perfectly compatible with the natural condition defining “good” stratifications (e.g., Whitney stratification in the finite dimensional case).References
- Jean-Pierre Aubin and Ivar Ekeland, Applied nonlinear analysis, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1984. A Wiley-Interscience Publication. MR 749753
- Jérôme Bolte, Aris Daniilidis, Adrian Lewis, and Masahiro Shiota, Clarke subgradients of stratifiable functions, SIAM J. Optim. 18 (2007), no. 2, 556–572. MR 2338451, DOI 10.1137/060670080
- M. Coste, An Introduction to $o$-Minimal Geometry, Inst. Rech. Math., Univ. de Rennes, 1999 (http://name.math.univ-rennes1.fr/michel.coste/polyens/OMIN.pdf).
- Lou van den Dries, Tame topology and o-minimal structures, London Mathematical Society Lecture Note Series, vol. 248, Cambridge University Press, Cambridge, 1998. MR 1633348, DOI 10.1017/CBO9780511525919
- Lou van den Dries and Chris Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), no. 2, 497–540. MR 1404337, DOI 10.1215/S0012-7094-96-08416-1
- Christopher G. Gibson, Klaus Wirthmüller, Andrew A. du Plessis, and Eduard J. N. Looijenga, Topological stability of smooth mappings, Lecture Notes in Mathematics, Vol. 552, Springer-Verlag, Berlin-New York, 1976. MR 0436203, DOI 10.1007/BFb0095244
- A. D. Ioffe, Directional compactness, scalarization and nonsmooth semi-Fredholm mappings, Nonlinear Anal. 29 (1997), no. 2, 201–219. MR 1446225, DOI 10.1016/S0362-546X(96)00046-6
- A. D. Ioffe, Metric regularity and subdifferential calculus, Uspekhi Mat. Nauk 55 (2000), no. 3(333), 103–162 (Russian, with Russian summary); English transl., Russian Math. Surveys 55 (2000), no. 3, 501–558. MR 1777352, DOI 10.1070/rm2000v055n03ABEH000292
- A. Ioffe, A Sard theorem for tame set-valued mappings, J. Math. Anal. Appl. 335 (2007), no. 2, 882–901. MR 2345506, DOI 10.1016/j.jmaa.2007.01.104
- Tosio Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995. Reprint of the 1980 edition. MR 1335452, DOI 10.1007/978-3-642-66282-9
- K. Kurdyka, P. Orro, and S. Simon, Semialgebraic Sard theorem for generalized critical values, J. Differential Geom. 56 (2000), no. 1, 67–92. MR 1863021, DOI 10.4310/jdg/1090347525
- A. S. Lewis, Active sets, nonsmoothness, and sensitivity, SIAM J. Optim. 13 (2002), no. 3, 702–725 (2003). MR 1972212, DOI 10.1137/S1052623401387623
- Boris S. Mordukhovich, Variational analysis and generalized differentiation. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 330, Springer-Verlag, Berlin, 2006. Basic theory. MR 2191744
- R. Tyrrell Rockafellar and Roger J.-B. Wets, Variational analysis, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 317, Springer-Verlag, Berlin, 1998. MR 1491362, DOI 10.1007/978-3-642-02431-3
- S. Smale, An infinite dimensional version of Sard’s theorem, Amer. J. Math. 87 (1965), 861–866. MR 185604, DOI 10.2307/2373250
- Hassler Whitney, Local properties of analytic varieties, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 205–244. MR 0188486
Bibliographic Information
- A. D. Ioffe
- Affiliation: Department of Mathematics, Technion, Haifa 32000, Israel
- MR Author ID: 91440
- Received by editor(s): June 19, 2006
- Published electronically: May 1, 2008
- Communicated by: Jonathan M. Borwein
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 3111-3119
- MSC (2000): Primary 49J53, 58K05
- DOI: https://doi.org/10.1090/S0002-9939-08-09101-6
- MathSciNet review: 2407074