On contact surgery
HTML articles powered by AMS MathViewer
- by John B. Etnyre
- Proc. Amer. Math. Soc. 136 (2008), 3355-3362
- DOI: https://doi.org/10.1090/S0002-9939-08-09278-2
- Published electronically: April 30, 2008
- PDF | Request permission
Abstract:
In this note we show that $+1$-contact surgery on distinct Legendrian knots frequently produces contactomorphic manifolds. We also give examples where this happens for $-1$-contact surgery. As an amusing corollary we find overtwisted contact structures that contain a large number of distinct Legendrian knots with the same classical invariants and tight complements.References
- Joan S. Birman and William W. Menasco, Stabilization in the braid groups. II. Transversal simplicity of knots, Geom. Topol. 10 (2006), 1425–1452. MR 2255503, DOI 10.2140/gt.2006.10.1425
- Yuri Chekanov, Differential algebra of Legendrian links, Invent. Math. 150 (2002), no. 3, 441–483. MR 1946550, DOI 10.1007/s002220200212
- Fan Ding and Hansjörg Geiges, A Legendrian surgery presentation of contact 3-manifolds, Math. Proc. Cambridge Philos. Soc. 136 (2004), no. 3, 583–598. MR 2055048, DOI 10.1017/S0305004103007412
- Katarzyna Dymara, Legendrian knots in overtwisted contact structures, www.arxiv.org/abs/ math.GT/0410122.
- Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, Geom. Funct. Anal. Special Volume (2000), 560–673. GAFA 2000 (Tel Aviv, 1999). MR 1826267, DOI 10.1007/978-3-0346-0425-3_{4}
- Yakov Eliashberg, Topological characterization of Stein manifolds of dimension $>2$, Internat. J. Math. 1 (1990), no. 1, 29–46. MR 1044658, DOI 10.1142/S0129167X90000034
- Judith Epstein, Dmitry Fuchs, and Maike Meyer, Chekanov-Eliashberg invariants and transverse approximations of Legendrian knots, Pacific J. Math. 201 (2001), no. 1, 89–106. MR 1867893, DOI 10.2140/pjm.2001.201.89
- John B. Etnyre, Legendrian and transversal knots, Handbook of knot theory, Elsevier B. V., Amsterdam, 2005, pp. 105–185. MR 2179261, DOI 10.1016/B978-044451452-3/50004-6
- John B. Etnyre and Ko Honda, Knots and contact geometry. I. Torus knots and the figure eight knot, J. Symplectic Geom. 1 (2001), no. 1, 63–120. MR 1959579, DOI 10.4310/JSG.2001.v1.n1.a3
- John B. Etnyre and Ko Honda, On symplectic cobordisms, Math. Ann. 323 (2002), no. 1, 31–39. MR 1906906, DOI 10.1007/s002080100292
- John B. Etnyre and Ko Honda, On connected sums and Legendrian knots, Adv. Math. 179 (2003), no. 1, 59–74. MR 2004728, DOI 10.1016/S0001-8708(02)00027-0
- John B. Etnyre and Ko Honda, Cabling and transverse simplicity, Ann. of Math. (2) 162 (2005), no. 3, 1305–1333. MR 2179731, DOI 10.4007/annals.2005.162.1305
- Robert E. Gompf, Handlebody construction of Stein surfaces, Ann. of Math. (2) 148 (1998), no. 2, 619–693. MR 1668563, DOI 10.2307/121005
- Ko Honda, On the classification of tight contact structures. I, Geom. Topol. 4 (2000), 309–368. MR 1786111, DOI 10.2140/gt.2000.4.309
- Paolo Lisca and András I. Stipsicz, Notes on the contact Ozsváth-Szabó invariants, Pacific J. Math. 228 (2006), no. 2, 277–295. MR 2274521, DOI 10.2140/pjm.2006.228.277
- Paolo Lisca and András I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds. I, Geom. Topol. 8 (2004), 925–945. MR 2087073, DOI 10.2140/gt.2004.8.925
- Peter Ozsváth and Zoltán Szabó, Heegaard Floer homology and contact structures, Duke Math. J. 129 (2005), no. 1, 39–61. MR 2153455, DOI 10.1215/S0012-7094-04-12912-4
Bibliographic Information
- John B. Etnyre
- Affiliation: Department of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160
- MR Author ID: 619395
- Email: etnyre@math.gatech.edu
- Received by editor(s): April 11, 2007
- Received by editor(s) in revised form: July 11, 2007
- Published electronically: April 30, 2008
- Additional Notes: The author thanks Yasha Eliashberg for a helpful conversation during the preparation of this paper. Supported in part by NSF CAREER Grant (DMS–0239600) and FRG-0244663.
- Communicated by: Daniel Ruberman
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 3355-3362
- MSC (2000): Primary 57R17, 53D10
- DOI: https://doi.org/10.1090/S0002-9939-08-09278-2
- MathSciNet review: 2407103