The “fundamental theorem” for the algebraic $K$-theory of spaces. III. The nil-term
Authors:
John R. Klein and E. Bruce Williams
Journal:
Proc. Amer. Math. Soc. 136 (2008), 3025-3033
MSC (2000):
Primary 19D10; Secondary 19D35
DOI:
https://doi.org/10.1090/S0002-9939-08-09293-9
Published electronically:
April 29, 2008
MathSciNet review:
2407063
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we identify the “nil-terms” for Waldhausen’s algebraic $K$-theory of spaces functor as the reduced $K$-theory of a category of equivariant spaces equipped with a homotopically nilpotent endomorphism.
- Nil Phenomena in Topology, Workshop at Vanderbilt University, Nashville, Tennessee, April 14-15, 2007.
- Hyman Bass, Algebraic $K$-theory, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0249491
- Farrell, T.: Private Communication, 2006.
- Thomas Hüttemann, John R. Klein, Wolrad Vogell, Friedhelm Waldhausen, and Bruce Williams, The “fundamental theorem” for the algebraic $K$-theory of spaces. I, J. Pure Appl. Algebra 160 (2001), no. 1, 21–52. MR 1829311, DOI https://doi.org/10.1016/S0022-4049%2800%2900058-X
- Thomas Hüttemann, John R. Klein, Wolrad Vogell, Friedhelm Waldhausen, and Bruce Williams, The “fundamental theorem” for the algebraic $K$-theory of spaces. II. The canonical involution, J. Pure Appl. Algebra 167 (2002), no. 1, 53–82. MR 1868117, DOI https://doi.org/10.1016/S0022-4049%2801%2900067-6
- Daniel Grayson, Higher algebraic $K$-theory. II (after Daniel Quillen), Algebraic $K$-theory (Proc. Conf., Northwestern Univ., Evanston, Ill., 1976), Springer, Berlin, 1976, pp. 217–240. Lecture Notes in Math., Vol. 551. MR 0574096
- Grunewald, J., Klein, J.R., Macko, T.: Operations on the A-theoretic nil-terms, submitted to Jour. of Topology, http://arxiv.org/pdf/math/0702580
- R. Schwänzl and R. M. Vogt, The categories of $A_\infty $- and $E_\infty $-monoids and ring spaces as closed simplicial and topological model categories, Arch. Math. (Basel) 56 (1991), no. 4, 405–411. MR 1094430, DOI https://doi.org/10.1007/BF01198229
- Friedhelm Waldhausen, Algebraic $K$-theory of spaces, Algebraic and geometric topology (New Brunswick, N.J., 1983) Lecture Notes in Math., vol. 1126, Springer, Berlin, 1985, pp. 318–419. MR 802796, DOI https://doi.org/10.1007/BFb0074449
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 19D10, 19D35
Retrieve articles in all journals with MSC (2000): 19D10, 19D35
Additional Information
John R. Klein
Affiliation:
Department of Mathematics, Wayne State University, Detroit, Michigan 48202
MR Author ID:
308817
Email:
klein@math.wayne.edu
E. Bruce Williams
Affiliation:
Department of Mathematics, University of Notre Dame, Notre Dame, Indiana 46556
Email:
williams.4@nd.edu
Received by editor(s):
May 7, 2007
Received by editor(s) in revised form:
July 3, 2007
Published electronically:
April 29, 2008
Communicated by:
Paul Goerss
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.