On patterns occurring in binary algebraic numbers
HTML articles powered by AMS MathViewer
- by B. Adamczewski and N. Rampersad
- Proc. Amer. Math. Soc. 136 (2008), 3105-3109
- DOI: https://doi.org/10.1090/S0002-9939-08-09319-2
- Published electronically: May 7, 2008
- PDF | Request permission
Abstract:
We prove that every algebraic number contains infinitely many occurrences of $7/3$-powers in its binary expansion. Using the same approach, we also show that every algebraic number contains either infinitely many occurrences of squares or infinitely many occurrences of one of the blocks $010$ or $02120$ in its ternary expansion.References
- Boris Adamczewski and Yann Bugeaud, On the complexity of algebraic numbers. I. Expansions in integer bases, Ann. of Math. (2) 165 (2007), no. 2, 547–565. MR 2299740, DOI 10.4007/annals.2007.165.547
- Boris Adamczewski, Yann Bugeaud, and Florian Luca, Sur la complexité des nombres algébriques, C. R. Math. Acad. Sci. Paris 339 (2004), no. 1, 11–14 (French, with English and French summaries). MR 2075225, DOI 10.1016/j.crma.2004.04.012
- Jean-Paul Allouche and Jeffrey Shallit, The ubiquitous Prouhet-Thue-Morse sequence, Sequences and their applications (Singapore, 1998) Springer Ser. Discrete Math. Theor. Comput. Sci., Springer, London, 1999, pp. 1–16. MR 1843077
- Émile Borel, Sur les chiffres décimaux de $\sqrt {2}$ et divers problèmes de probabilités en chaîne, C. R. Acad. Sci. Paris 230 (1950), 591–593 (French). MR 34544
- Juhani Karhumäki and Jeffrey Shallit, Polynomial versus exponential growth in repetition-free binary words, J. Combin. Theory Ser. A 105 (2004), no. 2, 335–347. MR 2046086, DOI 10.1016/j.jcta.2003.12.004
- M. Lothaire, Combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 17, Addison-Wesley Publishing Co., Reading, Mass., 1983. A collective work by Dominique Perrin, Jean Berstel, Christian Choffrut, Robert Cori, Dominique Foata, Jean Eric Pin, Guiseppe Pirillo, Christophe Reutenauer, Marcel-P. Schützenberger, Jacques Sakarovitch and Imre Simon; With a foreword by Roger Lyndon; Edited and with a preface by Perrin. MR 675953
- Kurt Mahler, Arithmetische Eigenschaften der Lösungen einer Klasse von Funktionalgleichungen, Math. Ann. 101 (1929), no. 1, 342–366 (German). MR 1512537, DOI 10.1007/BF01454845
- Antonio Restivo and Sergio Salemi, Overlap-free words on two symbols, Automata on infinite words (Le Mont-Dore, 1984) Lecture Notes in Comput. Sci., vol. 192, Springer, Berlin, 1985, pp. 198–206. MR 814744, DOI 10.1007/3-540-15641-0_{3}5
- A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912) 1–67; reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, ed., Universitetsforlaget, Oslo, 1977, pp. 413–478.
Bibliographic Information
- B. Adamczewski
- Affiliation: CNRS, Université Lyon 1, Université de Lyon, Institut Camille Jordan, 21 avenue Claude Bernard, 69622 Villeurbanne cedex, France
- MR Author ID: 704234
- N. Rampersad
- Affiliation: School of Computer Science, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
- Received by editor(s): July 19, 2007
- Received by editor(s) in revised form: August 22, 2007
- Published electronically: May 7, 2008
- Additional Notes: The first author is supported by the ANR through the project “DyCoNum”—JCJC06_{1}34288
- Communicated by: Ken Ono
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 3105-3109
- MSC (2000): Primary 11J81, 68R15
- DOI: https://doi.org/10.1090/S0002-9939-08-09319-2
- MathSciNet review: 2407073