An elementary proof of the law of quadratic reciprocity over function fields
HTML articles powered by AMS MathViewer
- by Chun-Gang Ji and Yan Xue
- Proc. Amer. Math. Soc. 136 (2008), 3035-3039
- DOI: https://doi.org/10.1090/S0002-9939-08-09327-1
- Published electronically: April 30, 2008
- PDF | Request permission
Abstract:
Let $P$ and $Q$ be relatively prime monic irreducible polynomials in $\mathbb {F}_{q}[T]$ ($2\nmid q$). In this paper, we give an elementary proof for the following law of quadratic reciprocity in $\mathbb {F}_{q}[T]$: \begin{equation*}\left (\frac {Q}{P}\right )\left (\frac {P}{Q}\right )=(-1)^{\frac {|P|-1}{2}\frac {|Q| -1}{2} },\end{equation*} where $\left (\frac {Q}{P}\right )$ is the Legendre symbol.References
- E. Artin, Quadratische Körper im Gebiete der höheren Kongruenzen. I, Math. Z. 19 (1924), no. 1, 153–206 (German). MR 1544651, DOI 10.1007/BF01181074
- Leonard Carlitz, The Arithmetic of Polynomials in a Galois Field, Amer. J. Math. 54 (1932), no. 1, 39–50. MR 1506871, DOI 10.2307/2371075
- Leonard Carlitz, On certain functions connected with polynomials in a Galois field, Duke Math. J. 1 (1935), no. 2, 137–168. MR 1545872, DOI 10.1215/S0012-7094-35-00114-4
- R. Dedekind, Abriss einer Theorie der höheren Congruenzen in Bezug auf einer reellen Primzahl-Modulus, J. Reine Angew. Math. 54 (1857), 1-26.
- Ke Qin Feng and Linsheng Ying, An elementary proof of the law of quadratic reciprocity in $F_q(T)$, Sichuan Daxue Xuebao 26 (1989), no. Special Issue, 36–40 (Chinese, with English summary). MR 1059674
- Kathy D. Merrill and Lynne H. Walling, On quadratic reciprocity over function fields, Pacific J. Math. 173 (1996), no. 1, 147–150. MR 1387795, DOI 10.2140/pjm.1996.173.147
- Michael Rosen, Number theory in function fields, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR 1876657, DOI 10.1007/978-1-4757-6046-0
Bibliographic Information
- Chun-Gang Ji
- Affiliation: Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China
- Email: cgji@njnu.edu.cn
- Yan Xue
- Affiliation: Department of Mathematics, Nanjing Normal University, Nanjing 210097, People’s Republic of China
- Email: xueyan1981521@163.com
- Received by editor(s): July 6, 2007
- Published electronically: April 30, 2008
- Additional Notes: The first author is partially supported by grants No. 10771103 and 10201013 from NNSF of China and Jiangsu planned projects for postdoctoral research funds
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 3035-3039
- MSC (2000): Primary 11R58; Secondary 11A15
- DOI: https://doi.org/10.1090/S0002-9939-08-09327-1
- MathSciNet review: 2407064