A note on generating functions for Hausdorff moment sequences
HTML articles powered by AMS MathViewer
- by Oliver Roth, Stephan Ruscheweyh and Luis Salinas
- Proc. Amer. Math. Soc. 136 (2008), 3171-3176
- DOI: https://doi.org/10.1090/S0002-9939-08-09460-4
- Published electronically: April 30, 2008
- PDF | Request permission
Abstract:
For functions $f$ whose Taylor coefficients at the origin form a Hausdorff moment sequence we study the behaviour of $w(y):=|f(\gamma +iy)|$ for $y>0$ ($\gamma \leq 1$ fixed).References
- William F. Donoghue Jr., Monotone matrix functions and analytic continuation, Die Grundlehren der mathematischen Wissenschaften, Band 207, Springer-Verlag, New York-Heidelberg, 1974. MR 0486556, DOI 10.1007/978-3-642-65755-9
- Felix Hausdorff, Summationsmethoden und Momentfolgen. I, Math. Z. 9 (1921), no. 1-2, 74–109 (German). MR 1544453, DOI 10.1007/BF01378337
- Stephan Ruscheweyh, Nichtlineare Extremalprobleme für holomorphe Stieltjesintegrale, Math. Z. 142 (1975), 19–23 (German). MR 374406, DOI 10.1007/BF01214844
- S. Ruscheweyh, L. Salinas, and T. Sugawa, Completely monotone sequences and universally prestarlike functions, preprint 2007.
- Karl-Joachim Wirths, Über totalmonotone Zahlenfolgen, Arch. Math. (Basel) 26 (1975), no. 5, 508–517. MR 396930, DOI 10.1007/BF01229774
Bibliographic Information
- Oliver Roth
- Affiliation: Mathematisches Institut, Universität Würzburg, D-97074 Würzburg, Germany
- MR Author ID: 644146
- Email: roth@mathematik.uni-wuerzburg.de
- Stephan Ruscheweyh
- Affiliation: Mathematisches Institut, Universität Würzburg, D-97074 Würzburg, Germany
- Email: ruscheweyh@mathematik.uni-wuerzburg.de
- Luis Salinas
- Affiliation: Departamento de Informática, Universidad Técnica F. Santa María, Valparaíso, Chile
- Email: lsalinas@inf.utfsm.cl
- Received by editor(s): July 5, 2007
- Published electronically: April 30, 2008
- Additional Notes: The first and second authors acknowledge partial support from the German-Israeli Foundation (grant G-809-234.6/2003). The second and third authors received partial support from FONDECYT (grants 1070269 and 7070131) and DGIP-UTFSM (grant 240721).
- Communicated by: Andreas Seeger
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 3171-3176
- MSC (2000): Primary 30E05, 26A48
- DOI: https://doi.org/10.1090/S0002-9939-08-09460-4
- MathSciNet review: 2407081