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ON THE UNIQUENESS OF THE BROWDER DEGREE

J. BERKOVITS AND M. MIETTUNEN

(Communicated by Jonathan M. Borwein)

In memory of Juha Berkovits, who passed away on 3 August 2007

Abstract. We consider the topological degree theory for maximal monotone
perturbations of mappings of class (S+) originally introduced by F. Browder
in 1983. In the original construction it is implicitly assumed that the maximal
monotone part is at least densely defined. The construction itself remains
valid without this assumption. However, for the proof of the uniqueness of the
degree the assumption is crucial. We shall recall the construction of the degree
and show how the stabilization of the degree can be obtained directly, thus
avoiding a series of technical lemmas used by F. Browder. The main result of
this paper is the proof for the uniqueness of the degree in the general case. We
also discuss the class of admissible homotopies, which may be quite narrow in
case the domain of the maximal monotone part is not densely defined.

1. Introduction

Let X be a real reflexive Banach space and T : X → 2X∗
a given multivalued

maximal monotone map. In [4] F. Browder, among other constructions, defined
degree theory for mappings of the form T +F , where F is demicontinuous bounded
and of class (S+). It is a standard notation for multivalued mappings to write
T : X → 2X∗

, where the image T (u) can be the empty set. In this note we prefer
the notation

T : D(T ) ⊂ X → 2X∗ \ ∅,
where the domain of T (often called effective domain) is

D(T ) = {u ∈ X | T (u) �= ∅ }.
In [4] there is no explicitly stated assumption about the domain D(T ), and due
to the notation T : X → 2X∗

it is not clear at first sight whether or not some
is actually needed. However, by a closer eximination of the proofs one can see
that it is implicitly assumed that D(T ) is at least dense in X. The main point is
that the use of affine homotopies is not possible without D(T ) being dense, thus
destroying the proof of the uniqueness of the degree. We also want to point out
that in the paper of S. Hu and N. Papageorgiou [6] the uniqueness proof of a further
extension of the degree should be modified accordingly, since their construction is
based on the original paper of Browder without any assumption on D(T ). The
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3468 J. BERKOVITS AND M. MIETTUNEN

missing assumptions in Browder’s construction is also noted in the recent article
by M. Otani and J. Kobayashi [7]. The main emphasis of Otani and Kobayashi lies
on the applications to variational inequalities. Our main result is the uniqueness
of the degree.

The paper is organized as follows. In Section 2 we recall some definitions and
basic properties of the mappings needed. Section 3 is devoted to the construction
of the degree. We briefly indicate how the original proof of F. Browder can be
simplified and avoid some technical lemmas. In Sections 4–5 we discuss the prop-
erties of the degree. The main emphasis is on the class of admissible homotopies.
It turns out that generally the affine homotopies cannot be used. This will severely
restrict the practical use of the degree. In view of applications it is important to
have mappings for which the degree is nonzero – a few such are given at the end of
Section 4. In Section 6 we shall prove our main result that the degree function is
unique for any domain D(T ) of the maximal monotone part.

2. Mappings of monotone type

We start with some well-known facts about maximal monotone mappings and
other classes of monotone type. Let X be a real reflexive Banach space. Note that
by the results of Troyanski and Kadec (see [5], for instance) we can assume that
both X and X∗ are locally uniformly convex. Let T : D(T ) ⊂ X → 2X∗ \ ∅ be a
given multivalued mapping. We say that T is monotone, if

〈w − y, u − x〉 ≥ 0 for all u, x ∈ D(T ), w ∈ T (u), y ∈ T (x).

The multivalued map T is maximal monotone, if it is monotone and the graph

G(T ) = { (u, w) | u ∈ D(T ), w ∈ T (u) }
is maximal monotone set in X × X∗, that is, T is monotone and if for some pair
(x, y) ∈ X × X∗

〈w − y, u − x〉 ≥ 0 for all (u, w) ∈ G(T ),
then (x, y) ∈ G(T ). It is easy to see that T : D(T ) ⊂ X → 2X∗\∅ is maximal
monotone if and only if T−1 : R(T ) → 2X \ ∅ is maximal monotone.

For our later use we recall some definitions of mappings of monotone type. A
single valued mapping F : X → X∗ is quasimonotone, if uk ⇀ u (weak convergence)
in X implies lim sup〈F (uk), uk −u〉 ≥ 0. Mapping F is pseudomonotone, if uk ⇀ u
in X and lim sup〈F (uk), uk −u〉 ≤ 0 imply F (uk) ⇀ F (u) and 〈F (uk), uk −u〉 → 0.
F is of class (S+), if uk ⇀ u in X and lim sup〈F (uk), uk − u〉 ≤ 0 imply uk → u.
For mappings of monotone type and the mutual relations between different classes
we refer to [1] and [4], for instance. If all the mappings are demicontinuous and
bounded in the sense that the image of any bounded set remains bounded, then we
have with obvious notations the inclusions

(S+) ⊂ (PM) ⊂ (QM).

Moreover, for demicontinuous and bounded maps the following hold: any monotone
map is pseudomonotone and any compact map is quasimonotone. The class (S+)
is stable under quasimonotone perturbations. Homotopies of monotone type will
be defined in Sections 3 and 4.

We recall that the duality map J : X → X∗ is the unique mapping defined by
properties 〈J(u), u〉 = ‖u‖2 and ‖J(u)‖ = ‖u‖ for all u ∈ X. If X and X∗ are
locally uniformly convex, then J is single valued, bijective, bicontinuous, maximal
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monotone, strictly monotone, bounded and of class (S+). In addition J−1 : X∗ →
X is the duality map of the dual space X∗, where we have identified X with X∗∗ by
reflexivity. In fact the duality map satisfies a stronger condition than (S+). Indeed,
for any sequence (uk) ⊂ X such that for some u ∈ X

(2.1) lim〈J(uk) − J(u), uk − u〉 = 0,

it follows that uk → u (see [8], p.864). The following lemma is proved in [8], p. 886
(see also [3]), for instance. Both X and X∗ are assumed to be locally uniformly
convex.

Lemma 2.1. Let T : D(T ) ⊂ X → 2X∗ \ ∅ be monotone. Then T is maximal
monotone if and only if T + λJ is surjective for all λ > 0.

It is easy to see that any maximal monotone map satisfies the following gener-
alized pseudomonotonicity condition.

Lemma 2.2. Assume that T : D(T ) ⊂ X → 2X∗ \ ∅ is maximal monotone. Then
T satisfies the generalized pseudomonotonicity condition: for any sequences (uk) ⊂
D(T ) and (wk), wk ∈ T (uk) such that

(2.2) uk ⇀ u in X, wk ⇀ w in X∗ and lim sup〈wk, uk − u〉 ≤ 0,

it follows that u ∈ D(T ), w ∈ T (u) and lim〈wk, uk − u〉 = 0.

3. Construction of degree

Let X be a real reflexive Banach space such that X and X∗ are locally uniformly
convex. For any maximal monotone map T : D(T ) → 2X∗\∅ we associate the family
of Yosida transformations

Tε = (T−1 + εJ−1)−1, ε > 0.

By Lemma 2.1 it is clear that D(Tε) = X. It is not hard to see that Tε : X → X∗

is single valued. For the proof of the following lemma, see [4].

Lemma 3.1. Let T : D(T ) → 2X∗ \ ∅ be a maximal monotone map with 0 ∈ T (0)
and let F : G → X∗ be a bounded demicontinuous map of class (S+), where G ⊂ X
is an open bounded set.

a) Then Tε = (T−1 + εJ−1)−1 : X → X∗ is bounded, continuous, maximal
monotone and pseudomonotone for all ε > 0.

b) Assume that y0 /∈ (T + F )(A ∩ D(T )), where A ⊂ G is closed. Then there
exists ε0 > 0 such that y0 /∈ (Tε + F )(A) for all 0 < ε < ε0.

The following two results are needed in order to simplify the original construction
of F.Browder. Let T : D(T ) → 2X∗ \ ∅ be a maximal monotone map. Without loss
of generality we assume 0 ∈ T (0). The first lemma is a continuity property.

Lemma 3.2. Assume that uk → u in X and εk → ε > 0. Then Tεk
(uk) → Tε(u)

in X∗.

Proof. Denote wk = Tεk
(uk). Then uk = vk + εkJ−1(wk) with some vk ∈ T−1(wk).

By the monotonicity of T−1 we get

‖wk‖ ‖uk‖ ≥ 〈wk, uk〉 = 〈wk, vk〉 + εk〈wk, J−1(wk)〉 ≥ εk ‖wk‖2

and consequently (wk) is bounded. It is easy to see that

Tεk
(uk) ≡ Tε(uk + (ε − εk)J−1(wk)).
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Hence the conclusion follows by the continuity of Tε. �

The second lemma can be wieved as a pseudomonotonicity type property.

Lemma 3.3. Assume that uk ⇀ u in X, εk → ε > 0 and lim sup〈Tεk
(uk), uk−u〉 ≤

0. Then Tεk
(uk) ⇀ Tε(u) and 〈Tεk

(uk), uk − u〉 → 0.

Proof. Denote wk = Tεk
(uk). Like in proof of Lemma 3.2 we see that (wk) is

bounded. The rest of the proof follows easily from the pseudomonotonicity of Tε,
since

wk = Tε(uk + (ε − εk)J−1(wk)). �

As a direct consequence of the above results we get the next lemma.

Lemma 3.4. Let T : D(T ) → 2X∗ \ ∅ be a maximal monotone map with 0 ∈ T (0)
and let F : G → X∗ be a bounded demicontinuous map of class (S+), where G ⊂ X
is an open bounded set. Let 0 < ε < ε and denote

H(ε, u) = Tε(u) + F (u), u ∈ G and ε ≤ ε ≤ ε.

Then H(·, ·) is a bounded homotopy of class (S+), i.e., H(·, ·) is bounded demicon-
tinuous and for any sequences (εk) ⊂ [ε, ε], εk → ε, (uk) ⊂ X, uk ⇀ u, such that
lim sup〈H(εk, uk), uk − u〉 ≤ 0, it follows that uk → u and H(εk, uk) ⇀ H(ε, u).

Hence the stabilization of the degree can be easily proved.

Theorem 3.5. With the assumptions of Lemma 3.4 let y0 /∈ (T + F )(∂G∩D(T )).
Then there exists ε0 > 0 such that y0 /∈ (Tε + F )(∂G) and

dS+(Tε + F, G, y0) = constant for all 0 < ε < ε0.

Proof. Applying Lemma 3.1 b) with A = ∂G we obtain ε0 > 0 such that y0 /∈
(Tε + F )(∂G) for all 0 < ε < ε0. Let 0 < ε1 < ε2 < ε0 be fixed. By Lemma 3.4
H(ε, u) = Tε(u) + F (u), u ∈ G, ε1 ≤ ε ≤ ε2, defines a bounded homotopy of class
(S+). Consequently, dS+(H(ε, ·), G, y0) remains constant for all ε1 ≤ ε ≤ ε2. Hence
dS+(Tε1 + F, G, y0) = dS+(Tε2 + F, G, y0), completing the proof. �

Denote by dS+ the unique degree function for demicontinuous mappings of class
(S+) (see [4]). Define

(3.1) d(T + F, G, y0) = lim
ε→0+

dS+(Tε + F, G, y0)

for any maximal monotone T : D(T ) → 2X∗ \∅ with 0 ∈ T (0), and for any bounded
demicontinuous map F : G → X∗ which is of class (S+), where G is an open
bounded set in X and y0 /∈ (T + F )(∂G ∩ D(T )).

4. Properties of degree

The integer valued function d defined by (3.1) is a degree function, provided the
next four conditions hold. The class of admissible homotopies referred to in (c) will
be defined later in this section. Let y0 /∈ (T + F )(∂G ∩ D(T )).

(a) If d(T + F, G, y0) �= 0, then there exists u ∈ G ∩ D(T ) such that y0 ∈
(T + F )(u).

(b) Let G1, G2 ⊂ G and G1 ∩G2 = ∅. If y0 /∈ (T +F )((G \ (G1 ∪G2))∩D(T )),
then d(T + F, G, y0) = d(T + F, G1, y0) + d(T + F, G2, y0).
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(c) Let {Ht | t ∈ [0, 1] } be a admissible homotopy and { y(t) | t ∈ [0, 1] } a con-
tinuous curve such that y(t) /∈ Ht(∂G) for all t ∈ [0, 1]. Then d(Ht, G, y(t))
is constant for all t ∈ [0, 1].

(d) Normalization: d(J, G, y0) = +1 for all y0 ∈ J(G).
The basic properties (a), (b) and (d) are easily verified. As usual, the homotopy
invariance property (c) requires some extra work.

We start with the definition inspired by Lemma 2.2. Let {Tt | 0 ≤ t ≤ 1 }
be a family of multis. We say that Tt is a pseudomonotone homotopy of maximal
monotone mappings, denoted Tt ∈ (PM)MM , if

(i) 0 ∈ Tt(0) and Tt : D(Tt) ⊂ X → 2X∗ \ ∅ is maximal monotone for all
t ∈ [0, 1],

(ii) for any sequences (tk) ⊂ [0, 1], (uk), uk ∈ D(Ttk
), and (wk), wk ∈ Ttk

(uk),
such that

(4.1) uk ⇀ u in X, tk → t, wk ⇀ w in X∗ and lim sup〈wk, uk − u〉 ≤ 0,

it follows that u ∈ D(Tt), w ∈ Tt(u) and lim〈wk, uk − u〉 = 0.
Useful characterizations of a pseudomonotone homotopy of maximal monotone
maps are given in the next result (see [4]).

Lemma 4.1. Let {Tt | 0 ≤ t ≤ 1 } be a family of maximal monotone multis such
that 0 ∈ Tt(0) for each t ∈ [0, 1]. Then condition (ii) above and the following three
conditions are mutually equivalent:

(1) The map defined by ψ(t, w) = (Tt + J)−1(w) is continuous from [0, 1]×X∗

into X.
(2) For each fixed w ∈ X∗ the map defined by ψw(t) = (Tt + J)−1(w) is con-

tinuous from [0, 1] into X.
(3) For any given pair (u, w), w ∈ Tt(u), and any sequence (tk), tk → t, there

exist sequences (uk) and (wk) such that wk ∈ Ttk
(uk) and uk → u, wk → w.

As in Lemma 3.1 a) we have for homotopies the following result.

Lemma 4.2. Assume Tt ∈ (PM)MM . Then, for any fixed ε > 0 the family
{ (Tt)ε | 0 ≤ t ≤ 1 } is a bounded pseudomonotone homotopy, i.e., for any sequences
(tk) ⊂ [0, 1], (uk) ⊂ X, such that

uk ⇀ u in X, tk → t and lim sup〈(Ttk
)ε(uk), uk − u〉 ≤ 0,

it follows that lim〈(Ttk
)ε(uk), uk − u〉 = 0 and (Ttk

)ε(uk) ⇀ (Tt)ε(u).

We shall need only the fact that (Tt)ε is quasimonotone and bounded (demi)con-
tinuous map from [0, 1] × X to X∗. The quasimonotonicity condition

uk ⇀ u in X and tk → t in [0, 1] imply lim sup〈(Ttk
)ε(uk), uk − u〉 ≥ 0

is clearly satisfied by Lemma 4.2.
Let {Ft | 0 ≤ t ≤ 1 } be a family of mappings from G to X∗, where G ⊂ X is an

open bounded set. We say that Ft is a homotopy of class (S+) if for any sequences
(tk) ⊂ [0, 1] and (uk) ⊂ G such that

uk ⇀ u in X, tk → t and lim sup〈Ftk
(uk), uk − u〉 ≤ 0,

it follows that uk → u and Ftk
(uk) ⇀ Ft(u). The admissible homotopies are of the

form Tt + Ft, 0 ≤ t ≤ 1, where Tt ∈ (PM)MM and Ft is a bounded homotopy of
the class (S+). In view of Lemma 4.2 it is clear that (Tt)ε + Ft defines a bounded
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homotopy of the class (S+) for each ε > 0. The homotopy invariance property
follows from the following result.

Lemma 4.3. Assume that y(t) /∈ (Tt + Ft)(∂G ∩ D(Tt)) for all 0 ≤ t ≤ 1. Then
there exists ε0 > 0 such that y(t) /∈ ((Tt)ε+Ft)(∂G) for all 0 ≤ t ≤ 1 and 0 < ε < ε0.
Moreover,

dS+((Tt)ε + Ft, G, y(t)) = constant for all 0 ≤ t ≤ 1 and 0 < ε < ε0.

In order to use the homotopy invariance property of degree effectively it is im-
portant to have “reference mappings”, that is, mappings with nonzero degree. The
duality map J which serves as a normalizing map is not always the best alternative.
We have the following simple observation.

Theorem 4.4. Let T be any maximal monotone mappings such that 0 ∈ T (0). Let
G ⊂ X be an open bounded set and assume that w ∈ (T + J)(G ∩ D(T )). Then

d(T + J, G, w) = +1.

Proof. The solution u0 ∈ G of w ∈ (T + J)(u) is unique and ‖u0‖ ≤ ‖w‖. Thus
w /∈ (T + J)(∂G∩D(T )) and the degree is well-defined. Take any R > 0 such that
R > ‖w‖ . Then by the additivity property (b) of the degree

d(T + J, G, w) = d(T + J, BR(0), w).

It is easy to see that tw /∈ (T + J)(∂BR(0) ∩ D(T )) for all 0 ≤ t ≤ 1 and hence
d(T + J, BR(0), w) = d(T + J, BR(0), 0) by the homotopy invariance property. By
definition d(T +J, BR(0), 0) = dS+(Tε +J, BR(0), 0) for all ε > 0 small enough. By
the monotonicity of Tε the equation (tTε + J)(u) = 0 has only the trivial solution
u = 0 for all 0 ≤ t ≤ 1. Consequently

d(T + J, G, w) = dS+(Tε + J, BR(0), 0) = dS+(J, BR(0), 0) = +1,

completing the proof. �

As an example of the use of the previous lemma we have the following well-known
existence result.

Corollary 4.5. Let T be any maximal monotone mappings such that 0 ∈ T (0) and
D(T ) is bounded. Let F : X → X∗ be any bounded demicontinuous map of class
(S+). Then the problem

w ∈ (T + F )(u), u ∈ D(T ),

admits at least one solution for any w ∈ X∗.

Proof. For any R > 0 such that D(T ) ⊂ BR(0) trivially

w /∈ (T + (1 − t)F + tJ)(∂BR(0) ∩ D(T ))

for all 0 ≤ t ≤ 1. Hence the conclusion follows by Lemma 4.4. �

The fact that the bounded domain D(T ) makes T + F surjective reflects the
maximality of T which dominates the behavior of T on the boundary of D(T ). If
D(T ) is not bounded, some coercivity condition is needed. We close this section by
a generalization of Borsuk’s theorem of the degree of odd mappings.
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Theorem 4.6. Let T be maximal monotone mappings such that 0 ∈ T (0) and D(T )
is symmetric with respect to the origin. Assume that T is odd in the sense that if w ∈
T (−u), then −w ∈ T (u). Let F : X → X∗ be any bounded demicontinuous map of
class (S+) which is odd on ∂BR(0) for some R > 0. If 0 /∈ (T +F )(∂BR(0)∩D(T )),
then

d(T + F, BR(0), 0) = odd.

Proof. It is easy to see that Tε is odd. For some sufficiently small ε > 0 we have

d(T + F, BR(0), 0) = dS+(Tε + F, BR(0), 0) = odd,

where the last equality follows from the corresponding result for mappings of class
(S+) (see [1]). �

A standard example of maximal monotone mappings is the subdifferential ∂χC

of the indicator function of a nonempty closed convex set C. It is not hard to see
that T = ∂χC satisfies the assumtions of the previous theorem provided 0 ∈ C and
C is symmetric with respect to the origin. Hence Theorem 4.6 can naturally be
applied to variational inequalities.

5. Invariance under affine homotopies

In view of applications of any degree theory the class of admissible homotopies
is crucial. We call Ft, 0 ≤ t ≤ 1, an affine homotopy between F0 and F1, if it is of
the form

Ft = (1 − t)F0 + tF1, 0 ≤ t ≤ 1.

Affine homotopies, being the simplest ones, are important for applications. Our
admissible homotopies are of the form Tt +Ft, 0 ≤ t ≤ 1, where Tt ∈ (PM)MM is a
pseudomonotone homotopy of maximal monotone mappings such that 0 ∈ Tt(0) for
all 0 ≤ t ≤ 1, and Ft is a bounded homotopy of the class (S+). It is a well-known
fact that the sum of two maximal monotone mappings is not necessarily maximal
monotone (see [3], [8], p. 888). Hence, for arbitrary maximal monotone mappings T
and S it is possible that (1−t)T+tS is not even maximal monotone. Hence it is clear
that in general not all affine homotopies are included to the class of pseudomonotone
homotopies of maximal monotone mappings. There are two possible ways to define
an affine homotopy. Indeed, let T and S be maximal monotone mappings such that
0 ∈ T (0) and 0 ∈ S(0). First, according to standard rules (see [8], p. 851)

(5.1) Tt = (1 − t)T + tS, D(Tt) = D(T ) ∩ D(S), 0 ≤ t ≤ 1.

Secondly, we can define an affine homotopy piecewise by setting

(5.2) T̂t(u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T (u), t = 0 and u ∈ D(T ),
(1 − t)T (u) + tS(u), 0 < t < 1 and u ∈ D(T ) ∩ D(S),
S(u), t = 1 and u ∈ D(S),
∅, otherwise.

We shall examine both cases more closely.

Lemma 5.1. Let T and S be maximal monotone mappings such that 0 ∈ T (0) and
0 ∈ S(0). Homotopies Tt, 0 ≤ t ≤ 1, and T̂t, 0 ≤ t ≤ 1, are defined by (5.1) and
(5.2), accordingly. Then

(i) Tt ∈ (PM)MM if and only if D(T ) = D(S).
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(ii) If D(T ) = D(S), then T̂t ∈ (PM)MM .
(iii) If T̂t ∈ (PM)MM , then D(T ) = D(S) = D(T ) ∩ D(S).

Proof. (i) Assume first that Tt ∈ (PM)MM . We need only the maximality to see
that D(T ) ∩ D(S) = D(T ). Indeed, otherwise D(T0) would be a proper subset of
D(T ) implying T0 would be a restriction of T . But this contradicts the assumption
that T0 is maximal as a monotone map. Similarly D(T ) ∩ D(S) = D(S) and thus
D(T ) = D(S). We shall use condition (3) of Lemma 4.1 to prove our assertion.
First, let tk → t ∈]0, 1[ and (u, w) ∈ G(Tt). Because of w ∈ (1 − t)T (u) + tS(u)
we can choose x ∈ T (u) and y ∈ S(u) such that w = (1 − t)x + ty. We set
uk ≡ u and wk = (1 − tk)x + tky. Then uk ∈ D(T ) ∩ D(S) = D((1 − tk)T + tkS),
wk ∈ (1 − tk)T (uk) + tkS(uk) and uk → u, wk → w. Second, let tk → 0 and
(u, w) ∈ G(T0) = G(T ), that is, u ∈ D(T ) = D(S) and w ∈ T (u). We set uk ≡ u
and wk = (1 − tk)w + tkx, where x ∈ S(u). It is easy to see that this leads to the
desired result. Similarly condition (3) holds if t = 1.

(ii) The second assertion is a trivial consequence of (i), since Tt = T̂t in the case
D(T ) = D(S).

(iii) Assume that T̂t ∈ (PM)MM . Let (u, w) ∈ G(Tt) and 0 < tk < 1, tk → 0.
By condition (3) of Lemma 4.1 there exist sequences (uk) and (wk) such that
(uk, wk) ∈ G(Ttk

) and uk → u, wk → w. Because of uk ∈ D(Ttk
) = D(T ) ∩ D(S)

and uk → u we have D(T ) ⊂ D(T ) ∩ D(S) and consequently D(T ) = D(T ) ∩ D(S).
Similarly we get D(S) = D(T ) ∩ D(S), completing the proof. �

The homotopy of our next lemma is used in the original uniqueness proof of the
degree given in [4]. Hence we will see that assumtion D(T ) = X is necessary in [4].

Lemma 5.2. Let T be maximal monotone mappings such that 0 ∈ T (0). Denote

Tt(u) = (1 − t)T (u), u ∈ D(Tt) = D(T ), 0 ≤ t ≤ 1,

T̂t(u) =

⎧⎪⎨
⎪⎩

(1 − t)T (u), 0 ≤ t < 1 and u ∈ D(T ),
0, t = 1 and u ∈ X,

∅, otherwise.

Then

(i) Tt ∈ (PM)MM if and only if D(T ) = X.
(ii) T̂t ∈ (PM)MM if and only if D(T ) = X.

Proof. Let S = 0 with D(S) = X. Assertion (i) then follows from Lemma 5.1 (i).
In view of Lemma 5.1 (ii) assertion (ii) is proved, as soon as we show that T̂t is a
pseudomonotone homotopy of maximal monotone mappings in case D(T ) is dense
in X. Indeed, assume that D(T ) = X. Take any sequences (tk) ⊂ [0, 1], (uk),
uk ∈ D(Ttk

), and (wk), wk ∈ Ttk
(uk) such that

uk ⇀ u in X, tk → t, wk ⇀ w in X∗ and lim sup〈wk, uk − u〉 ≤ 0.

We shall show that u ∈ D(Tt), w ∈ Tt(u) and lim〈wk, uk − u〉 = 0. If t �= 1, there
are no difficulties due to the fact that T is maximal monotone and thus satisfies
the generalized pseudomonotonicity condition (Lemma 2.2). Thus we assume that
t = 1, i.e., tk → 1. Without loss of generality we can assume that tk �= 1 for all
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k ∈ Z+. Since wk ∈ (1 − tk)T (uk) we have 〈wk − (1 − tk)y, uk − x〉 ≥ 0 for all
(x, y) ∈ G(T ) and for all k ∈ Z+. As k → ∞ we get the inequality

lim inf〈wk, uk − x〉 ≥ 0

for all x ∈ D(T ). Consequently

〈w, u〉 ≥ lim sup〈wk, uk〉 ≥ lim inf〈wk, uk〉 ≥ 〈w, x〉
for all x ∈ D(T ). Since D(T ) is dense in X, we finally obtain

〈w, u − x〉 ≥ 0 for all x ∈ X.

From this we conclude that w = 0 ∈ T1(u). Moreover, by the above calculations
with w = 0 we get 0 = 〈w, x〉 ≥ lim inf〈wk, uk〉 and thus lim〈wk, uk〉 = 0, i.e.,
lim〈wk, uk − u〉 = 0, completing the proof. �

6. Uniqueness of degree

Let d̂ be another degree function defined for the same class of mappings as d
satisfying the properties (a)-(d). Let T : D(T ) → 2X∗ \ ∅ with 0 ∈ T (0) be a
maximal monotone multivalued map and F : G → X∗ a bounded demicontinuous
map which is of class (S+), where G is an open bounded set in X. Assume that
y0 /∈ (T + F )(∂G ∩ D(T )). We have to show that

d(T + F, G, y0) = d̂(T + F, G, y0).

By definition we can write

(6.1) d(T + F, G, y0) = dS+(Tε̃ + F, G, y0)

for some fixed ε̃ > 0, which is chosen sufficiently small. The restriction of d (or
d̂) to bounded demicontinuous maps of class (S+) (corresponding the case T = 0)
defines a topological degree dS+ which is unique [1],[4]. Hence d and d̂ coincide on
that smaller class and especially

(6.2) d(Tε̃ + F, G, y0) = dS+(Tε̃ + F, G, y0) = d̂(Tε̃ + F, G, y0).

For the next, crucial step, we need the following result. Note that we do not impose
any condition on the domain D(T ).

Lemma 6.1. Let T : D(T ) → 2X∗ \ ∅, 0 ∈ T (0), be a maximal monotone map and
ε̃ > 0 fixed. Define

Ht = (T−1 + tε̃J−1)−1, 0 ≤ t ≤ 1,

where D(Ht) = X for 0 < t ≤ 1 and D(H0) = D(T ). Then Ht, 0 ≤ t ≤ 1, defines
a pseudomonotone homotopy of maximal monotone mappings.

Proof. First note that Ht is maximal monotone for all 0 ≤ t ≤ 1 and Ht is single
valued for all 0 < t ≤ 1. We use condition (3) of Lemma 4.1 to prove the proposition.
Let (tk) ⊂ [0, 1], tk → t �= 0 and w = Ht(u). We set uk ≡ u and wk = Htk

(uk) =
Htk

(u). Then uk → u and by Lemma 3.2 also wk → w. Next let (tk) ⊂ [0, 1],
tk → 0 and (u, w) ∈ G(H0), that is, u ∈ D(T ) and w ∈ T (u). Without loss of
generality we can assume that tk �= 0 for all k ∈ Z+. This time we set wk ≡ w and
uk = u + tkε̃J−1(w). Now wk ∈ T (uk − tkε̃J−1(wk)) which is equal to wk = w =
Htk

(uk). Since uk → u and wk → w the proof is completed. �

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



3476 J. BERKOVITS AND M. MIETTUNEN

Since y0 /∈ (Ht + F )(∂G ∩ D(Tt)) for all 0 ≤ t ≤ 1, we obtain by the homotopy
invariance of d̂ that

(6.3) d̂(H1 + F, G, y0) = d̂(H0 + F, G, y0),

that is,

(6.4) d̂(Tε̃ + F, G, y0) = d̂(T + F, G, y0).

Hence we have proved the desired equality

(6.5) d(T + F, G, y0) = d(Tε̃ + F, G, y0) = d̂(Tε̃ + F, G, y0) = d̂(T + F, G, y0).
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