Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Representation of measures with polynomial denseness in $\mathbf {L}_{p} (\mathbb {R}, d\mu )$, $0<p<\infty$, and its application to determinate moment problems
HTML articles powered by AMS MathViewer

by Andrew G. Bakan PDF
Proc. Amer. Math. Soc. 136 (2008), 3579-3589 Request permission

Abstract:

It has been proved that algebraic polynomials $\mathcal {P}$ are dense in the space $L^{p}({\mathbb {R}},d\mu )$, $p\in (0, \infty )$, iff the measure $\mu$ is representable as $d\mu =w^p d\nu$ with a finite non-negative Borel measure $\nu$ and an upper semi-continuous function $w:\mathbb {R}\to \mathbb {R}^+: =[0,\infty )$ such that $\mathcal {P}$ is a dense subset of the space $C^0_w : = \{f\in C(\mathbb {R}) : w(x)f (x)\to 0 \mbox {as} |x|\to \infty \}$ equipped with the seminorm $\| f \|_{w}:= \sup _{x \in {\mathbb {R}}} w(x)|f(x)|$. The similar representation $(1+x^2)d\mu =w^2 d\nu$ ( $(1+x)d\mu =w^2 d\nu$) with the same $\nu$ and $w$ ( $w(x)=0, x < 0$, and $\mathcal {P}$ is also a dense subset of ${C^0_{\sqrt {x} \cdot w}}$ ) corresponds to all those measures (supported by $\mathbb {R}^+$) that are uniquely determined by their moments on $\mathbb {R}$ ($\mathbb {R}^+$). The proof is based on de Branges’ theorem (1959) on weighted polynomial approximation. A more general question on polynomial denseness in a separable Fréchet space in the sense of Banach $L^\Phi ({\mathbb {R}},d\mu )$ has also been examined.
References
  • N. I. Akhiezer, On the weighted approximation of continuous functions on the real axis, Uspekhi Mat. Nauk 11(1956), 3-43 ; AMS Transl. Ser. 2, 22(1962), 95-137.
  • N. I. Akhiezer, The classical moment problem, Oliver and Boyd, Edinburgh, 1965.
  • L. V. Kantorovich and G. P. Akilov, Functional analysis, 2nd ed., Pergamon Press, Oxford-Elmsford, N.Y., 1982. Translated from the Russian by Howard L. Silcock. MR 664597
  • Edwin J. Akutowicz, Weighted approximation on the real axis, Jber. Deutsch. Math.-Verein. 68 (1966), no. Abt. 3, 113–139. MR 200645
  • Andrew G. Bakan, Polynomial approximation in $L_p(\textbf {R},d\mu )$. I. General results and representation theorem, Nats. Akad. Nauk Ukraïn. Īnst. Mat. Preprint 7 (1998), 45. MR 1734341
  • Andrew G. Bakan, Polynomial density in $L_p(\Bbb R,d\mu )$ and representation of all measures which generate a determinate Hamburger moment problem, Approximation, optimization and mathematical economics (Pointe-à-Pitre, 1999) Physica, Heidelberg, 2001, pp. 37–46. MR 1842874
  • A. G. Bakan, A criterion for denseness of polynomials and the general form of a linear continuous functional in the space $C^0_w$, Ukraïn. Mat. Zh. 54 (2002), no. 5, 610–622 (Russian, with English and Ukrainian summaries); English transl., Ukrainian Math. J. 54 (2002), no. 5, 750–762. MR 1956458, DOI 10.1023/A:1021627228761
  • Andrew Bakan and Stephan Ruscheweyh, Representation of measures with simultaneous polynomial denseness in $L_p(\textbf {R},d\mu ),\ 1\le p<\infty$, Ark. Mat. 43 (2005), no. 2, 221–249. MR 2172989, DOI 10.1007/BF02384778
  • Y. M. Berezansky, Z. G. Sheftel, and G. F. Us, Functional analysis. Vol. I, Operator Theory: Advances and Applications, vol. 85, Birkhäuser Verlag, Basel, 1996. Translated from the 1990 Russian original by Peter V. Malyshev. MR 1397267
  • Ch. Berg and J. P. R. Christensen, Density questions in the classical theory of moments, Ann. Inst. Fourier (Grenoble) 31 (1981), no. 3, vi, 99–114 (English, with French summary). MR 638619
  • Christian Berg and Marco Thill, Rotation invariant moment problems, Acta Math. 167 (1991), no. 3-4, 207–227. MR 1120603, DOI 10.1007/BF02392450
  • Christian Berg, Moment problems and polynomial approximation, Ann. Fac. Sci. Toulouse Math. (6) Special issue (1996), 9–32. 100 ans après Th.-J. Stieltjes. MR 1462705
  • S. Bernstein, La problème de l’approximation des fonctions continues sur tout l’axe réel et l’une de ses applications, Bull. Soc. Math. France 52 (1924), 399–410 (French). MR 1504852
  • Alexander Borichev and Mikhail Sodin, The Hamburger moment problem and weighted polynomial approximation on discrete subsets of the real line, J. Anal. Math. 76 (1998), 219–264. MR 1676987, DOI 10.1007/BF02786937
  • Louis de Branges, The Bernstein problem, Proc. Amer. Math. Soc. 10 (1959), 825–832. MR 114080, DOI 10.1090/S0002-9939-1959-0114080-0
  • R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York-Toronto-London, 1965. MR 0221256
  • Ryszard Engelking, Topologia ogólna, Państwowe Wydawnictwo Naukowe, Warsaw, 1975 (Polish). Biblioteka Matematyczna, Tom 47. [Mathematics Library. Vol. 47]. MR 0500779
  • P. K. Geetha, On Bernstein approximation problem, J. Math. Anal. Appl. 25 (1969), 450–469. MR 255827, DOI 10.1016/0022-247X(69)90248-0
  • Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
  • W. K. Hayman and P. B. Kennedy, Subharmonic functions. Vol. I, London Mathematical Society Monographs, No. 9, Academic Press [Harcourt Brace Jovanovich, Publishers], London-New York, 1976. MR 0460672
  • B. Ya. Levin, Completeness of systems of functions, quasi-analyticity and subharmonic majorants, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 170 (1989), no. Issled. Lineĭn. Oper. Teorii Funktsiĭ. 17, 102–156, 322–323 (Russian, with English summary); English transl., J. Soviet Math. 63 (1993), no. 2, 171–201. MR 1039577, DOI 10.1007/BF01099310
  • D. S. Lubinsky, Bernstein’s weighted approximation on $\Bbb R$ still has problems, Electron. Trans. Numer. Anal. 25 (2006), 166–177. MR 2280371
  • S. N. Mergelyan, Weighted approximations by polynomials, American Mathematical Society Translations, Ser. 2, Vol. 10, American Mathematical Society, Providence, R.I., 1958, pp. 59–106. MR 0094633
  • Loren D. Pitt, Weighted $L^{p}$ closure theorems for spaces of entire functions, Israel J. Math. 24 (1976), no. 2, 94–118. MR 477726, DOI 10.1007/BF02762942
  • M. Riesz, Sur le problème des moments et le théorème de Parseval correspondant, Acta Litt. Ac. Sci. Szeged 1(1923), 209-225.
  • Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
  • Mikhail Sodin, Which perturbations of quasianalytic weights preserve quasianalyticity? How to use de Branges’ theorem, J. Anal. Math. 69 (1996), 293–309. MR 1428104, DOI 10.1007/BF02787111
  • Mikhail Sodin and Peter Yuditskii, Another approach to de Branges’ theorem on weighted polynomial approximation, Proceedings of the Ashkelon Workshop on Complex Function Theory (1996), Israel Math. Conf. Proc., vol. 11, Bar-Ilan Univ., Ramat Gan, 1997, pp. 221–227. MR 1476719
Similar Articles
Additional Information
  • Andrew G. Bakan
  • Affiliation: Institute of Mathematics, National Academy of Sciences of Ukraine, Tereschenkivska Street 3, Kyiv 01601, Ukraine
  • Email: andrew@bakan.kiev.ua
  • Received by editor(s): August 21, 2007
  • Published electronically: June 4, 2008
  • Communicated by: N. Tomczak-Jaegermann
  • © Copyright 2008 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 136 (2008), 3579-3589
  • MSC (2000): Primary 46E30, 41A10; Secondary 44A60, 41A65
  • DOI: https://doi.org/10.1090/S0002-9939-08-09418-5
  • MathSciNet review: 2415042