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Abstract. In this article, the p-th moment and almost surely exponential
stability of the strong solution to a stochastic heat equation driven by an
m-dimensional Brownian motion is investigated by a simple method. In par-
ticular, the sharp top Lyapunov exponents are explicitly calculated based on
the representation of the strong solution.

1. Introduction

In recent years, the asymptotic behavior of the solutions to stochastic partial
differential equations in separable Hilbert spaces, especially, stochastic heat equa-
tions, had been extensively studied by many authors because of its importance in
applications; see [1, 2, 5, 7, 8, 9, 10, 11] and the references therein. In particular,
in 2001, Caraballo et al. [2] observed that a white noise can be used to stabilize an
unstable stochastic partial differential equation by using the classical and powerful
method of the Lyapunov functional. Their observation is very interesting in prob-
ability theory, and it indicates that a multiplicative noise is extremely effective to
stabilize an unstable stochastic system.

Motivated by their work, in this article, we principally consider the following
stochastic heat equation disturbed by a Brownian motion with the homogeneous
Dirichlet boundary:

(1.1)
∂u

∂t
(t, x) = ∆u(t, x) + β0u(t, x) + β1u(t, x)ẇ1(t) + β2u(t, x)ẇ2(t), x ∈ O

with an initial value u0 (deterministic or random), where O ∈ R
d is a bounded

domain with smooth boundary ∂O and w(t) = (w1(t), w2(t)) is a standard two-
dimensional Brownian motion and βi, i = 0, 1, 2, are arbitrary real numbers. We
are especially interested in the top Lyapunov exponents of the unique strong so-
lution, which express the sufficient and necessary conditions for the exponentially
asymptotic stabilities and imply the stabilization of an unstable stochastic system
by noises. Since the construction of Lyapunov functionals is, in general, very dif-
ficult, we attempt to find a simple way to investigate the exponential stability of
stochastic dynamics. Roughly speaking, unlike the celebrated Lyapunov method,
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the Lyapunov exponent is calculated based on the explicit representation of the
stochastic dynamics.

The main results will be described in the next section and a generalization will
be formulated in the last section. Our conclusions greatly improve the existing
work on stochastic heat equations of Caraballo et al. [2] and Ichikawa [6].

2. Main results and proofs

Let (Ω,F , {Ft}t≥0, P) be a complete filtered probability space with a filtration
{Ft}t≥0 satisfying the usual conditions and let w(t) = (w1(t), w2(t)) be a two-
dimensional Brownian motion with respect to {Ft}t≥0. Let L2(O) be the family
of all the square integrable functions on O with the usual inner product 〈·, ·〉 and
norm | · | and let H1

0 (O) and H2(O) be the usual Sobolev spaces. Further, let
A = ∆ with the homogeneous Dirichlet boundary condition on ∂O with the domain
D(A) = H1

0 (O) ∩ H2(O). Assume {λn}n≥1 and {en}n≥1 are the eigenvalues and
eigenfunctions for −A such that {en}n≥1 forms a canonical orthonormal basis of
L2(O). Then, it is clear that λn are strictly positive and increasing and en ∈ D(A).
Finally, we assume that if u0 is random, then it is measurable with respect to F0,
and if it is nonrandom, then |u0| �= 0 throughout this paper. Then u0 has the
unique representation u0(x) =

∑∞
n=1 u0

nen(x), where u0
n = 〈u0, en〉.

In the following, we will deal with the stability of the stochastic dynamic system
determined by (1.1). More precisely, the stability relative to the following stochastic
heat equation will be considered in the following:
(2.1)⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂u
∂t (t, x) = ∆u(t, x) + β0u(t, x) + β1u(t, x)ẇ1(t) + β2u(t, x)ẇ2(t), x ∈ O,

u(t, x) = 0, x ∈ ∂O,

u(0, x) = u0(x) ∈ D(A), x ∈ ∂O.

Then Proposition 6.29 in [3] claims that there exists a unique strong solution u(t, x)
to (2.1). Here for the strong solution, we mean that there exists a predictable
process u(t) ∈ D(A) such that u ∈ C([0,∞); L2(O)) and the stochastic integral
equation below holds:

u(t, x) = u0(x) +
∫ t

0

(∆u(s, x) + β0u(s, x)) ds

+
∫ t

0

β1u(s, x)dw1(s) +
∫ t

0

β2u(s, x)dw2(s), a.e. x ∈ O.(2.2)

In this article, the (asymptotic) stabilities both in the p-th moment and in the
almost sure sense as below will be discussed. In addition, without essential change,
our main results in this paper can be generalized to a wide class of strongly elliptic
operators A with compact resolvent; for example, see [3, 4]. To illustrate the
methods, we will only investigate the simple operator A defined in the above.

Definition 2.1. We say the solution u(t) to (2.1) is almost surely and p-th moment,
respectively, exponentially stable if we have

α(u0) := lim sup
t→∞

log
|u(t)|

t
< 0, a.s.
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and

γ(u0) := lim sup
t→∞

log
E[|u(t)|p]

t
< 0,

respectively.

For simplicity, we will call α(u0) and γ(u0) in the definition above the Lyapunov
exponents in the almost surely sense and in the p-th moment respectively. It is
clear that α(u0) is generally random. For more knowledge about the stability, we
refer the readers to the monograph [8].

To formulate the main results in this article, we will first discuss the stability of
the following heat equation:

(2.3)
∂v

∂t
(t, x) = ∆v(t, x) + β0v(t, x), x ∈ O,

with the Dirichlet condition v(t, x) = 0, x ∈ ∂O and the initial value u0 ∈ D(A)
(may be random). It is well known that there exists a unique strong solution to
(2.3) in a similar sense as in the above, which will be denoted by v(t, x) in the
sequel. The p-th moment and the almost surely exponential stabilities of v(t) can
be defined similarly as in Definition 2.1.

Define

n0 := inf{n; u0
n �= 0}.

For simplicity of description, we state the following hypothesis:
H: We assume that the p-th moment of |u0| exists for some p > 0 and that it is

strictly positive, i.e.,

0 < E[|u0|p] < ∞.

Lemma 2.1. For the strong solution v(t, x) to (2.3), the following holds.
(1) Assume that u0 is not random. Then

lim
t→∞

1
t

log |v(t)| = β0 − λn0 .

In particular, for any given u0, v(t) is exponentially stable in the almost sure sense
if and only if λn0 > β0.
(2) Assume that u0 is random. Then under H, we have

(2.4) lim sup
t→∞

1
t

log |v(t)| ≤ β0 − λ1 and lim sup
t→∞

1
t

log E[|v(t)|p] ≤ (β0 − λ1)p.

In particular, for any p > 0 and initial value u0, the solution v(t) is exponentially
stable in p-th moment if λ1 > β0.

Proof. The first claim is proved in [7] for d ≤ 3, and similar arguments are feasible
for the general case. Here we only prove (2). From the uniqueness of the solution,
it follows that

v(t, x) =
∞∑

n=1

exp{(−λn + β0)t}u0
nen(x).
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Therefore, we have

E[|v(t)|p] = E

⎡
⎣
( ∞∑

n=1

(
exp{(−λn + β0)t}u0

n

)2

)p/2
⎤
⎦

≤ exp{(−λ1 + β0)pt}E

⎡
⎣
( ∞∑

n=1

(u0
n)2

)p/2
⎤
⎦

= exp{(−λ1 + β0)pt}E[|u0|p],

which completes the proof of the second inequality in (2.4). Additionally, the first
inequality in (2.4) can be shown in a similar way. �

Remark 2.1. For any initial value u0 and each p, λ1 > β0 is sufficient for both p-th
moment and almost surely exponential stability. This is completely different from
the disturbed system (2.1) as we will see below.

Lemma 2.2. The unique strong solution u(t, x) can be written as a Fourier series:

(2.5) u(t, x) =
∞∑

n=1

zn(t)en(x),

where zn(t) is the unique strong solution of the stochastic Ito equation with initial
value u0

n:

(2.6) dzn(t) = (−λn + β0)zn(t)dt + β1zn(t)dw1(t) + β2zn(t)dw2(t).

Proof. Denote
∑∞

n=1 zn(t)en(x) by ū(t, x) for convenience. We first note that ū(t, x)
is a strong solution to the stochastic heat equation (2.1). Indeed, it is obvious that∑∞

n=1 zn(t)en ∈ D(A) and

(2.7) ∆ū(t, x) = −
∞∑

n=1

λnzn(t)en(x).

On the other hand, using integration by parts and the stochastic Fubini theorem,
we deduce that

ū(t, x) =
∞∑

n=1

{
u0

nen(x) +
∫ t

0

(−λn + β0)zn(s)en(x)ds

+ β1

∫ t

0

zn(s)en(x)dw1(s) + β2

∫ t

0

zn(s)en(x)dw2(s)
}

=
∞∑

n=1

u0
nen(x) +

∫ t

0

∞∑
n=1

(−λn + β0)zn(s)en(x)ds

+β1

∫ t

0

∞∑
n=1

zn(s)en(x)dw1(s) + β2

∫ t

0

∞∑
n=1

zn(s)en(x)dw2(s).(2.8)

Therefore, by (2.7) and (2.8) we see that ū(t, x) satisfies the integral equation (2.2).
As a consequence, the conclusion follows from the uniqueness of the strong solution
to (2.1). �
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Lemma 2.3. For each n, the unique solution zn(t) to the stochastic Ito equation
(2.6) equals

u0
n exp

{(
−λn + β0 −

1
2
β2

1 − 1
2
β2

2

)
t + β1w1(t) + β2w2(t)

}
.

Proof. This follows easily from the Ito formula. �

We first study the exponential stability in the p-th moment sense. As in Lemma
2.1, the results depend on the randomness of u0. We are mainly interested in
calculating the sharp top Lyapunov exponent.

Theorem 2.4. Assume u(t, x) is the unique strong solution to (2.1). Then we have
(1) If u0 is deterministic, then

lim
t→∞

1
t

log E[|u(t)|p] = (β0 − λn0)p +
1
2
(β2

1 + β2
2)(p2 − p).

(2) Suppose u0 is random and independent of w(t). If, in addition, H holds, then

lim
t→∞

1
t

log E[|u(t)|p] ≤ (β0 − λ1)p +
1
2
(β2

1 + β2
2)(p2 − p).

Proof. From Lemma 2.2 and Lemma 2.3, it follows that

u(t, x) =
∞∑

n=1

u0
n exp

{(
−λn + β0 −

1
2
β2

1 − 1
2
β2

2

)
t + β1w1(t) + β2w2(t)

}
en(x)

=
∞∑

n=1

u0
nen(x) exp{(β0 − λn)t} exp

{
−1

2
(β2

1 + β2
2)t + β1w1(t) + β2w2(t)

}

= v(t, x) exp
{

β1w1(t) −
1
2
β2

1t + β2w2(t) −
1
2
β2

2t

}
.

Hence, if u0 is not random, we see that

E[|u(t)|p] = |v(t)|pE

[
exp

{
β1pw1(t) −

1
2
β2

1pt + β2pw2(t) −
1
2
β2

2pt

}]

= |v(t)|pE[exp{β1pw1(t)}]E[exp{β2pw2(t)}] exp
{
−1

2
(β2

1 + β2
2)pt

}

= |v(t)|p exp
{

t

2
(β2

1 + β2
2)(p2 − p)

}
,(2.9)

where the independency of w1(t) and w2(t) and the exponential martingale property
with respect to Brownian motion have been used for the second and third equations
respectively. Then, combining (1) in Lemma 2.1 and (2.9), we obtain the first
assertion.

If u0 is random, then so is n0. Therefore, we cannot obtain the sharp top
Lyapunov exponent as in (1). However, by (2) in Lemma 2.1, we deduce easily that

lim sup
t→∞

1
t

log E[|u(t)|p] = lim sup
t→∞

1
t

log E[|v(t)|p] +
1
2
(β2

1 + β2
2)(p2 − p)

≤ (β0 − λ1)p +
1
2
(β2

1 + β2
2)(p2 − p).

Then the proof of the theorem is completed. �
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From the above theorem, it is obvious that the following corollary holds, which
expresses the sufficient and necessary conditions for moment exponential stability.

Corollary 2.5. For any initial value u0 ∈ D(A), the solution u(t) is p-th moment
exponentially stable for any p satisfying

(2.10) p < 1 +
2(λ1 − β0)
(β2

1 + β2
2)

.

In particular, if u0 is nonrandom, the p-th moment exponential stability is satisfied
if and only if λn0 > β0 + 1

2 (β2
1 + β2

2)(p − 1).

Remark 2.2. (1) Here we restrict ourselves to the one-dimensional case. Plainly,
we suppose O = (0, 1). If β1 = 1 and β0 = β2 = 0, then it was shown that the
solution is p-th moment exponentially stable up to p = 19; see Example 1 in [6].
However, by Corollary 2.5, we see that it is p-th moment exponentially stable for
all p < 2π2 + 1 (= 20.739 · · · ).

(2) Assume that β1 �= 0. The relation (2.10) indicates that the solution will
become unstable in p-th moment if |β2| is large enough for p > 1. This is exactly
opposite to the almost surely stability, as we will see below.

(3) It is worth mentioning that for any β0 ∈ R, the unstable deterministic system
can be stabilized in p-th moment if either |β1| or |β2| is large enough for all small
enough p < 1. In addition, if p = 1, the moment stability is independent of the
disturbance term w(t); see Lemma 2.1.

In the following theorem, we consider the almost surely exponential stability
(i.e., pathwise stability) for u(t).

Theorem 2.6. (1) Assume u0 is deterministic. Then the top Lyapunov exponent
of u(t) equals β0 − λn0 − 1

2β2
1 − 1

2β2
2 . More precisely, we have

lim
t→∞

1
t

log |u(t)| = β0 − λn0 −
1
2
β2

1 − 1
2
β2

2 .

In particular, the solution is almost surely exponentially stable if and only if

λn0 > β0 −
1
2
β2

1 − 1
2
β2

2 .

(2) Assume u0 is a random variable independent of w(t). Then the following holds:

lim sup
t→∞

1
t

log |u(t)| ≤ β0 − λ1 −
1
2
β2

1 − 1
2
β2

2 .

Proof. Since the proof is similar to that of Theorem 2.4, we will only state the
outline of the proof here. By the Fourier expansion 2.4 of u(t, x), we have

|u(t)| = |v(t)| exp
{

β1w1(t) −
1
2
β2

1t + β2w2(t) −
1
2
β2

2t

}
.

Then, by the law of large numbers relative to Brownian motion, we see that

lim
t→∞

1
t

log |u(t)| = lim
t→∞

1
t

log |v(t)| + lim
t→∞

(
w1(t)

t
+

w2(t)
t

)
− 1

2
(β2

1 + β2
2)

= β0 − λn0 −
1
2
(β2

1 + β2
2).(2.11)

Therefore, (1) is obtained. On the other hand, by similar arguments as the above
and (2) in Lemma 2.1, one can easily prove the second claim. Thus the proof is
completed. �
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Remark 2.3. Assuming O = (0, 1) and β1 = 0, Caraballo et al. [2] found that if β2
2 >

2(β0−π2), then the stochastic system becomes exponentially stable (see Subsection
3.1 [2]). But by virtue of the above theorem, we know that β2

2 > 2(β0 − π2) is also
necessary for the stability if n0 = 1.

3. Generalization

In this section, we are interested in the stochastic heat equation driven by an
m-dimensional Brownian motion w(t) = (w1(t), . . . , wm(t)):

(3.1)

⎧⎪⎨
⎪⎩

∂u
∂t (t, x) = ∆u(t, x) + β0u(t, x) +

∑m
i=1 βiu(t, x)ẇi(t), x ∈ O, t > 0,

u(t, x) = 0, x ∈ ∂O, t > 0,

u(0, x) = u0(x) ∈ D(A), x ∈ ∂O,

where βi, i = 0, 1, . . . , m are arbitrary real numbers and m ≥ 3. Then the unique
strong solution u(t, x) is also assured by Proposition 6.29 in [3]. Then with the
obvious modification of the proofs in Section 2, we can extend the main theorems
in the last section to the stochastic dynamics determined by (3.1). We will only
state the theorems and omit the detailed proofs. In addition, we will assume u0 is
deterministic in the sequel for simplicity.

Theorem 3.1. Suppose that u(t, x) is the unique strong solution to (3.1). Then
we have

• The top Lyapunov exponent of u(t) in p-th moment equals

(β0 − λn0)p +
1
2
(p2 − p)

m∑
i=1

β2
i .

In particular, the sufficient and necessary condition of the p-th moment
exponential stability of u(t) is λn0 > β0 + 1

2

∑m
i=1 β2

i (p − 1).
• The almost surely exponential stability holds if and only if βi, i = 0, 1, . . . , m

satisfy the relation

λn0 > β0 −
1
2

m∑
i=1

β2
i .

More precisely, we have limt→∞
1
t log |u(t)| = −λn0 + β0 − 1

2

∑m
i=1 β2

i .

We will conclude this article with the following remark.

Remark 3.1. (1) As we have seen, if m = 2, then the almost surely exponential
stability holds only for β2

1 + β2
2 > 2(β0 − λn0). In other words, the system will

be unstable if β2
1 + β2

2 ≤ 2(β0 − λn0). However, the above theorem shows that
any unstable stochastic system can be stabilized by additional multiplicative noise
β3u(t)ẇ(t) by choosing large enough β3. Generally, Theorem 3.1 implies that ad-
ditional noise can be used to stabilize any almost surely unstable system, while it
does not hold for moment stability. Precisely, p is decreasing as m increases for any
βi.

(2) For a random initial value u0, the following relations are satisfied:

α(u0) ≤ β0 − λ1 −
1
2

m∑
i=1

β2
i
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and

γ(u0) ≤ (β0 − λ1)p +
1
2
(p2 − p)

m∑
i=1

β2
i .
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