Estimates for negative eigenvalues of a random Schrödinger operator
Authors:
O. Safronov and B. Vainberg
Journal:
Proc. Amer. Math. Soc. 136 (2008), 3921-3929
MSC (2000):
Primary 47F05
DOI:
https://doi.org/10.1090/S0002-9939-08-09356-8
Published electronically:
May 28, 2008
MathSciNet review:
2425732
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Michael Aizenman and Elliott H. Lieb, On semiclassical bounds for eigenvalues of Schrödinger operators, Phys. Lett. A 66 (1978), no. 6, 427–429. MR 598768, DOI https://doi.org/10.1016/0375-9601%2878%2990385-7
- Jean Bourgain, On random Schrödinger operators on $\Bbb Z^2$, Discrete Contin. Dyn. Syst. 8 (2002), no. 1, 1–15. MR 1877824, DOI https://doi.org/10.3934/dcds.2002.8.1
- J. Bourgain, Random lattice Schrödinger operators with decaying potential: some higher dimensional phenomena, Geometric aspects of functional analysis, Lecture Notes in Math., vol. 1807, Springer, Berlin, 2003, pp. 70–98. MR 2083389, DOI https://doi.org/10.1007/978-3-540-36428-3_7
- Joseph G. Conlon, A new proof of the Cwikel-Lieb-Rosenbljum bound, Rocky Mountain J. Math. 15 (1985), no. 1, 117–122. MR 779256, DOI https://doi.org/10.1216/RMJ-1985-15-1-117
- Michael Cwikel, Weak type estimates for singular values and the number of bound states of Schrödinger operators, Ann. of Math. (2) 106 (1977), no. 1, 93–100. MR 473576, DOI https://doi.org/10.2307/1971160
- Sergey A. Denisov, Absolutely continuous spectrum of multidimensional Schrödinger operator, Int. Math. Res. Not. 74 (2004), 3963–3982. MR 2103798, DOI https://doi.org/10.1155/S107379280414141X
- Ky Fan, Maximum properties and inequalities for the eigenvalues of completely continuous operators, Proc. Nat. Acad. Sci. U.S.A. 37 (1951), 760–766. MR 45952, DOI https://doi.org/10.1073/pnas.37.11.760
- V. Glaser, H. Grosse, and A. Martin, Bounds on the number of eigenvalues of the Schrödinger operator, Comm. Math. Phys. 59 (1978), no. 2, 197–212. MR 491613
- B. Helffer and D. Robert, Riesz means of bound states and semiclassical limit connected with a Lieb-Thirring’s conjecture, Asymptotic Anal. 3 (1990), no. 2, 91–103. MR 1061661
- Dirk Hundertmark, On the number of bound states for Schrödinger operators with operator-valued potentials, Ark. Mat. 40 (2002), no. 1, 73–87. MR 1948887, DOI https://doi.org/10.1007/BF02384503
- Dirk Hundertmark, Elliott H. Lieb, and Lawrence E. Thomas, A sharp bound for an eigenvalue moment of the one-dimensional Schrödinger operator, Adv. Theor. Math. Phys. 2 (1998), no. 4, 719–731. MR 1663336, DOI https://doi.org/10.4310/ATMP.1998.v2.n4.a2
- Ari Laptev and Timo Weidl, Sharp Lieb-Thirring inequalities in high dimensions, Acta Math. 184 (2000), no. 1, 87–111. MR 1756570, DOI https://doi.org/10.1007/BF02392782
- Elliott Lieb, Bounds on the eigenvalues of the Laplace and Schroedinger operators, Bull. Amer. Math. Soc. 82 (1976), no. 5, 751–753. MR 407909, DOI https://doi.org/10.1090/S0002-9904-1976-14149-3
- Elliott H. Lieb, On characteristic exponents in turbulence, Comm. Math. Phys. 92 (1984), no. 4, 473–480. MR 736404 21 Lieb, E.H., Thirring, W.: Inequalities for the moments of the eigenvalues of the Schrödinger Hamiltonian and their relation to Sobolev inequalities. Studies in Math. Phys., Essays in Honor of Valentine Bargmann, Princeton, 269–303 (1976).
- G. V. Rozenbljum, Distribution of the discrete spectrum of singular differential operators, Dokl. Akad. Nauk SSSR 202 (1972), 1012–1015 (Russian). MR 0295148
- Oleg Safronov, Multi-dimensional Schrödinger operators with some negative spectrum, J. Funct. Anal. 238 (2006), no. 1, 327–339. MR 2253019, DOI https://doi.org/10.1016/j.jfa.2006.01.006
- Oleg Safronov, Multi-dimensional Schrödinger operators with no negative spectrum, Ann. Henri Poincaré 7 (2006), no. 4, 781–789. MR 2232372, DOI https://doi.org/10.1007/s00023-006-0268-6
- Timo Weidl, On the Lieb-Thirring constants $L_{\gamma ,1}$ for $\gamma \geq 1/2$, Comm. Math. Phys. 178 (1996), no. 1, 135–146. MR 1387945
Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 47F05
Retrieve articles in all journals with MSC (2000): 47F05
Additional Information
O. Safronov
Affiliation:
Department of Mathematics and Statistics, University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, North Carolina 28223
MR Author ID:
607478
Email:
osafrono@uncc.edu
B. Vainberg
Affiliation:
Department of Mathematics and Statistics, University of North Carolina at Charlotte, 201 University City Boulevard, Charlotte, North Carolina 28223
MR Author ID:
194146
Email:
bvainbe@uncc.edu
Keywords:
Eigenvalue estimates,
random Schrödinger operators
Received by editor(s):
May 11, 2007
Received by editor(s) in revised form:
September 26, 2007
Published electronically:
May 28, 2008
Communicated by:
Mikhail Shubin
Article copyright:
© Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.