## Diophantine equations and congruences over function fields

HTML articles powered by AMS MathViewer

- by Elena Yudovina PDF
- Proc. Amer. Math. Soc.
**136**(2008), 3839-3850 Request permission

## Abstract:

We generalize the methods of Pierce for counting solutions to the congruence $X^a \equiv Y^b \bmod D$ and the square sieve method for counting squares in the sequence $f(X) + g(Y)$ to the function field setting.## References

- Jordan S. Ellenberg and Akshay Venkatesh,
*Reflection principles and bounds for class group torsion*, Int. Math. Res. Not. IMRN**1**(2007), Art. ID rnm002, 18. MR**2331900**, DOI 10.1093/imrn/rnm002 - D. R. Heath-Brown, Hybrid bounds for $L$-functions: a $q$-analogue of Van der Corput’s method and a $t$-analogue of Burgess’s method.
*Recent Progress in Analytic Number Theory*, eds. Halberstam and Hooley. Academic Press, London (1981), pp. 121-126. - D. R. Heath-Brown,
*The least square-free number in an arithmetic progression*, J. Reine Angew. Math.**332**(1982), 204–220. MR**656864**, DOI 10.1515/crll.1982.332.204 - H. A. Helfgott and A. Venkatesh,
*Integral points on elliptic curves and 3-torsion in class groups*, J. Amer. Math. Soc.**19**(2006), no. 3, 527–550. MR**2220098**, DOI 10.1090/S0894-0347-06-00515-7 - C. Hooley,
*A note on square-free numbers in arithmetic progressions*, Bull. London Math. Soc.**7**(1975), 133–138. MR**371799**, DOI 10.1112/blms/7.2.133 - Nicholas M. Katz,
*On a question of Lillian Pierce*, Forum Math.**18**(2006), no. 4, 699–710. MR**2254391**, DOI 10.1515/FORUM.2006.035 - Lillian B. Pierce,
*A bound for the 3-part of class numbers of quadratic fields by means of the square sieve*, Forum Math.**18**(2006), no. 4, 677–698. MR**2254390**, DOI 10.1515/FORUM.2006.034 - L. B. Pierce,
*The 3-part of class numbers of quadratic fields*, J. London Math. Soc. (2)**71**(2005), no. 3, 579–598. MR**2132372**, DOI 10.1112/S002461070500637X - Michael Rosen,
*Number theory in function fields*, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR**1876657**, DOI 10.1007/978-1-4757-6046-0 - Wolfgang M. Schmidt,
*Equations over finite fields. An elementary approach*, Lecture Notes in Mathematics, Vol. 536, Springer-Verlag, Berlin-New York, 1976. MR**0429733**, DOI 10.1007/BFb0080437

## Additional Information

**Elena Yudovina**- Affiliation: Department of Mathematics, FAS, Harvard University, One Oxford Street, Cambridge, Massachusetts 02138
- Received by editor(s): July 25, 2007
- Received by editor(s) in revised form: October 2, 2007
- Published electronically: June 3, 2008
- Communicated by: Ken Ono
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**136**(2008), 3839-3850 - MSC (2000): Primary 11D45
- DOI: https://doi.org/10.1090/S0002-9939-08-09363-5
- MathSciNet review: 2425723