Upper bound for isometric embeddings $\ell _2^m\rightarrow \ell _p^n$
HTML articles powered by AMS MathViewer
- by Yu. I. Lyubich
- Proc. Amer. Math. Soc. 136 (2008), 3953-3956
- DOI: https://doi.org/10.1090/S0002-9939-08-09377-5
- Published electronically: June 2, 2008
- PDF | Request permission
Abstract:
The isometric embeddings $\ell _{2;\mathbb {K}}^m \rightarrow \ell _{p;\mathbb {K}}^n$ ($m\geq 2$, $p\in 2\mathbb {N}$) over a field $\mathbb {K}\in \lbrace \mathbb {R},\mathbb {C},\mathbb {H}\rbrace$ are considered, and an upper bound for the minimal $n$ is proved. In the commutative case ($\mathbb {K}\neq \mathbb {H}$) the bound was obtained by Delbaen, Jarchow and Pełczyński (1998) in a different way.References
- F. Delbaen, H. Jarchow, and A. Pełczyński, Subspaces of $L_p$ isometric to subspaces of $l_p$, Positivity 2 (1998), no. 4, 339–367. MR 1656109, DOI 10.1023/A:1009764511096
- H. König, Isometric imbeddings of Euclidean spaces into finite-dimensional $l_ p$-spaces, Banach Center Publ., vol. 34, Polish Acad. Sci., Warsaw, 1995, pp. 79–87.
- Ju. I. Ljubič, The boundary spectrum on contractions in Minkowski spaces, Sibirsk. Mat. Ž. 11 (1970), 358–369 (Russian). MR 0270191
- Yu. I. Lyubich and O. A. Shatalova, Isometric embeddings of finite-dimensional $l_p$-spaces over the quaternions, Algebra i Analiz 16 (2004), no. 1, 15–32; English transl., St. Petersburg Math. J. 16 (2005), no. 1, 9–24. MR 2068351, DOI 10.1090/S1061-0022-04-00842-8
- Yuri I. Lyubich and Leonid N. Vaserstein, Isometric embeddings between classical Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata 47 (1993), no. 3, 327–362. MR 1235223, DOI 10.1007/BF01263664
- V. D. Milman, A few observations on the connections between local theory and some other fields, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 283–289. MR 950988, DOI 10.1007/BFb0081748
- Bruce Reznick, Sums of even powers of real linear forms, Mem. Amer. Math. Soc. 96 (1992), no. 463, viii+155. MR 1096187, DOI 10.1090/memo/0463
Bibliographic Information
- Yu. I. Lyubich
- Affiliation: Department of Mathematics, Technion, 32000, Haifa, Israel
- Email: lyubich@tx.technion.ac.il
- Received by editor(s): August 1, 2007
- Received by editor(s) in revised form: October 3, 2007
- Published electronically: June 2, 2008
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 3953-3956
- MSC (2000): Primary 46B04
- DOI: https://doi.org/10.1090/S0002-9939-08-09377-5
- MathSciNet review: 2425735