The first return time properties of an irrational rotation
HTML articles powered by AMS MathViewer
- by Dong Han Kim and Kyewon Koh Park
- Proc. Amer. Math. Soc. 136 (2008), 3941-3951
- DOI: https://doi.org/10.1090/S0002-9939-08-09388-X
- Published electronically: June 2, 2008
- PDF | Request permission
Abstract:
If an ergodic system has positive entropy, then the Shannon-McMillan-Breiman theorem provides a relationship between the entropy and the size of an atom of the iterated partition. The system also has Ornstein-Weiss’ first return time property, which offers a method of computing the entropy via an orbit. We consider irrational rotations which are the simplest model of zero entropy. We prove that almost every irrational rotation has the analogous properties if properly normalized. However there are some irrational rotations that exhibit different behavior.References
- Boris Adamczewski and Julien Cassaigne, Diophantine properties of real numbers generated by finite automata, Compos. Math. 142 (2006), no. 6, 1351–1372. MR 2278750, DOI 10.1112/S0010437X06002247
- Pascal Alessandri and Valérie Berthé, Three distance theorems and combinatorics on words, Enseign. Math. (2) 44 (1998), no. 1-2, 103–132. MR 1643286
- L. Barreira and B. Saussol, Hausdorff dimension of measures via Poincaré recurrence, Comm. Math. Phys. 219 (2001), no. 2, 443–463. MR 1833809, DOI 10.1007/s002200100427
- L. Barreira and B. Saussol, Product structure of Poincaré recurrence, Ergodic Theory Dynam. Systems 22 (2002), no. 1, 33–61. MR 1889564, DOI 10.1017/S0143385702000020
- Mike Boyle and Douglas Lind, Expansive subdynamics, Trans. Amer. Math. Soc. 349 (1997), no. 1, 55–102. MR 1355295, DOI 10.1090/S0002-9947-97-01634-6
- Srečko Brlek, Enumeration of factors in the Thue-Morse word, Discrete Appl. Math. 24 (1989), no. 1-3, 83–96. First Montreal Conference on Combinatorics and Computer Science, 1987. MR 1011264, DOI 10.1016/0166-218X(92)90274-E
- Geon Ho Choe and Byoung Ki Seo, Recurrence speed of multiples of an irrational number, Proc. Japan Acad. Ser. A Math. Sci. 77 (2001), no. 7, 134–137. MR 1857291
- Alan Cobham, Uniform tag sequences, Math. Systems Theory 6 (1972), 164–192. MR 457011, DOI 10.1007/BF01706087
- Samuel Eilenberg, Automata, languages, and machines. Vol. A, Pure and Applied Mathematics, Vol. 58, Academic Press [Harcourt Brace Jovanovich, Publishers], New York, 1974. MR 0530382
- Sébastien Ferenczi and Kyewon Koh Park, Entropy dimensions and a class of constructive examples, Discrete Contin. Dyn. Syst. 17 (2007), no. 1, 133–141. MR 2257422, DOI 10.3934/dcds.2007.17.133
- M. Kac, On the notion of recurrence in discrete stochastic processes, Bull. Amer. Math. Soc. 53 (1947), 1002–1010. MR 22323, DOI 10.1090/S0002-9904-1947-08927-8
- Anatole Katok and Jean-Paul Thouvenot, Slow entropy type invariants and smooth realization of commuting measure-preserving transformations, Ann. Inst. H. Poincaré Probab. Statist. 33 (1997), no. 3, 323–338 (English, with English and French summaries). MR 1457054, DOI 10.1016/S0246-0203(97)80094-5
- A. Ya. Khinchin, Continued fractions, University of Chicago Press, Chicago, Ill.-London, 1964. MR 0161833
- Chihurn Kim and Dong Han Kim, On the law of logarithm of the recurrence time, Discrete Contin. Dyn. Syst. 10 (2004), no. 3, 581–587. MR 2018868, DOI 10.3934/dcds.2004.10.581
- Dong Han Kim, The recurrence time for irrational rotations, Osaka J. Math. 43 (2006), no. 2, 351–364. MR 2262339
- Dong Han Kim and Byoung Ki Seo, The waiting time for irrational rotations, Nonlinearity 16 (2003), no. 5, 1861–1868. MR 1999584, DOI 10.1088/0951-7715/16/5/318
- M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002. A collective work by Jean Berstel, Dominique Perrin, Patrice Seebold, Julien Cassaigne, Aldo De Luca, Steffano Varricchio, Alain Lascoux, Bernard Leclerc, Jean-Yves Thibon, Veronique Bruyere, Christiane Frougny, Filippo Mignosi, Antonio Restivo, Christophe Reutenauer, Dominique Foata, Guo-Niu Han, Jacques Desarmenien, Volker Diekert, Tero Harju, Juhani Karhumaki and Wojciech Plandowski; With a preface by Berstel and Perrin. MR 1905123, DOI 10.1017/CBO9781107326019
- John Milnor, On the entropy geometry of cellular automata, Complex Systems 2 (1988), no. 3, 357–385. MR 955558
- Donald Samuel Ornstein and Benjamin Weiss, Entropy and data compression schemes, IEEE Trans. Inform. Theory 39 (1993), no. 1, 78–83. MR 1211492, DOI 10.1109/18.179344
- Kyewon Koh Park, On directional entropy functions, Israel J. Math. 113 (1999), 243–267. MR 1729449, DOI 10.1007/BF02780179
- Andrew M. Rockett and Peter Szüsz, Continued fractions, World Scientific Publishing Co., Inc., River Edge, NJ, 1992. MR 1188878, DOI 10.1142/1725
- B. Saussol, S. Troubetzkoy, and S. Vaienti, Recurrence, dimensions, and Lyapunov exponents, J. Statist. Phys. 106 (2002), no. 3-4, 623–634. MR 1884547, DOI 10.1023/A:1013710422755
- Noel B. Slater, Gaps and steps for the sequence $n\theta \ \textrm {mod}\ 1$, Proc. Cambridge Philos. Soc. 63 (1967), 1115–1123. MR 217019, DOI 10.1017/s0305004100042195
- Vladimir G. Sprindžuk, Metric theory of Diophantine approximations, Scripta Series in Mathematics, V. H. Winston & Sons, Washington, D.C.; John Wiley & Sons, New York-Toronto-London, 1979. Translated from the Russian and edited by Richard A. Silverman; With a foreword by Donald J. Newman. MR 548467
- Aaron D. Wyner and Jacob Ziv, Some asymptotic properties of the entropy of a stationary ergodic data source with applications to data compression, IEEE Trans. Inform. Theory 35 (1989), no. 6, 1250–1258. MR 1036629, DOI 10.1109/18.45281
Bibliographic Information
- Dong Han Kim
- Affiliation: Department of Mathematics, The University of Suwon, Hwaseong 445-743, Korea
- MR Author ID: 630927
- Email: kimdh@suwon.ac.kr
- Kyewon Koh Park
- Affiliation: Department of Mathematics, Ajou University, Suwon 443-749, Korea
- MR Author ID: 136240
- Email: kkpark@ajou.ac.kr
- Received by editor(s): June 1, 2007
- Received by editor(s) in revised form: October 2, 2007
- Published electronically: June 2, 2008
- Additional Notes: The first author was supported by the Korea Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-C00016).
The second author was supported in part by KRF 2007-313-C00044 - Communicated by: Jane M. Hawkins
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 3941-3951
- MSC (2000): Primary 37E10, 11K50
- DOI: https://doi.org/10.1090/S0002-9939-08-09388-X
- MathSciNet review: 2425734