A sufficient and necessary condition for the convergence of the sequence of successive approximations to a unique fixed point
HTML articles powered by AMS MathViewer
- by Tomonari Suzuki
- Proc. Amer. Math. Soc. 136 (2008), 4089-4093
- DOI: https://doi.org/10.1090/S0002-9939-08-09390-8
- Published electronically: June 4, 2008
- PDF | Request permission
Abstract:
If $(X, d)$ is a complete metric space and $T : X \to X$ is a contraction mapping, then the conclusion of the Banach-Caccioppoli contraction principle is that the sequence of successive approximations of $T$ starting from any point of the space converges to a unique fixed point. In this paper, we obtain a sufficient and necessary condition of the above conclusion in terms of the so-called strong Leader mappings.References
- S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133–181.
- R. Caccioppoli, Un teorema generale sull’esistenza di elementi uniti in una transformazione funzionale, Rend. Accad. Naz. Lincei, 11 (1930), 794–799.
- James Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241–251. MR 394329, DOI 10.1090/S0002-9947-1976-0394329-4
- James Caristi and William A. Kirk, Geometric fixed point theory and inwardness conditions, The geometry of metric and linear spaces (Proc. Conf., Michigan State Univ., East Lansing, Mich., 1974) Lecture Notes in Math., Vol. 490, Springer, Berlin, 1975, pp. 74–83. MR 0399968
- Lj. B. Ćirić, A generalization of Banach’s contraction principle, Proc. Amer. Math. Soc. 45 (1974), 267–273. MR 356011, DOI 10.1090/S0002-9939-1974-0356011-2
- M. Edelstein, On fixed and periodic points under contractive mappings, J. London Math. Soc. 37 (1962), 74–79. MR 133102, DOI 10.1112/jlms/s1-37.1.74
- J. Jachymski, An iff fixed point criterion for continuous self-mappings on a complete metric space, Aequationes Math. 48 (1994), no. 2-3, 163–170. MR 1295089, DOI 10.1007/BF01832983
- R. Kannan, Some results on fixed points. II, Amer. Math. Monthly 76 (1969), 405–408. MR 257838, DOI 10.2307/2316437
- W. A. Kirk, Contraction mappings and extensions, Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 1–34. MR 1904272
- W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277 (2003), no. 2, 645–650. MR 1961251, DOI 10.1016/S0022-247X(02)00612-1
- Solomon Leader, Equivalent Cauchy sequences and contractive fixed points in metric spaces, Studia Math. 76 (1983), no. 1, 63–67. MR 728197, DOI 10.4064/sm-76-1-63-67
- Janusz Matkowski, Integrable solutions of functional equations, Dissertationes Math. (Rozprawy Mat.) 127 (1975), 68. MR 412650
- A. Meir and Emmett Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326–329. MR 250291, DOI 10.1016/0022-247X(69)90031-6
- P. V. Subrahmanyam, Remarks on some fixed-point theorems related to Banach’s contraction principle, J. Mathematical and Physical Sci. 8 (1974), 445–457; errata, ibid. 9 (1975), 195. MR 358749
- Tomonari Suzuki, Generalized distance and existence theorems in complete metric spaces, J. Math. Anal. Appl. 253 (2001), no. 2, 440–458. MR 1808147, DOI 10.1006/jmaa.2000.7151
- Tomonari Suzuki, Several fixed point theorems concerning $\tau$-distance, Fixed Point Theory Appl. 3 (2004), 195–209. MR 2096951, DOI 10.1155/S168718200431003X
- Tomonari Suzuki, Some notes on Meir-Keeler contractions and $L$-functions, Bull. Kyushu Inst. Technol. Pure Appl. Math. 53 (2006), 1–13. MR 2237618
- Tomonari Suzuki, A definitive result on asymptotic contractions, J. Math. Anal. Appl. 335 (2007), no. 1, 707–715. MR 2340349, DOI 10.1016/j.jmaa.2007.01.093
Bibliographic Information
- Tomonari Suzuki
- Affiliation: Department of Mathematics, Kyushu Institute of Technology, Sensuicho, Tobata, Kitakyushu 804-8550, Japan
- Email: suzuki-t@mns.kyutech.ac.jp
- Received by editor(s): August 20, 2007
- Received by editor(s) in revised form: October 12, 2007
- Published electronically: June 4, 2008
- Additional Notes: The author was supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology.
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 4089-4093
- MSC (2000): Primary 54H25
- DOI: https://doi.org/10.1090/S0002-9939-08-09390-8
- MathSciNet review: 2425751