Isometries for the Carathéodory metric
HTML articles powered by AMS MathViewer
- by Marco Abate and Jean-Pierre Vigué
- Proc. Amer. Math. Soc. 136 (2008), 3905-3909
- DOI: https://doi.org/10.1090/S0002-9939-08-09391-X
- Published electronically: May 20, 2008
- PDF | Request permission
Abstract:
Given two open unit balls $B_1$ and $B_2$ in complex Banach spaces, we consider a holomorphic mapping $f\colon B_1\to B_2$ such that $f(0)=0$ and $f’(0)$ is an isometry. Under some additional hypotheses on the Banach spaces involved, we prove that $f(B_1)$ is a complex closed analytic submanifold of $B_2$.References
- Larbi Belkhchicha, Caractérisation des isomorphismes analytiques sur la boule-unité de $\textbf {C}^n$ pour une norme, Math. Z. 215 (1994), no. 1, 129–141 (French). MR 1254816, DOI 10.1007/BF02571702
- Tullio Franzoni and Edoardo Vesentini, Holomorphic maps and invariant distances, Notas de Matemática [Mathematical Notes], vol. 69, North-Holland Publishing Co., Amsterdam-New York, 1980. MR 563329
- Ian Graham, Holomorphic mappings into strictly convex domains which are Kobayashi isometries at one point, Proc. Amer. Math. Soc. 105 (1989), no. 4, 917–921. MR 961406, DOI 10.1090/S0002-9939-1989-0961406-0
- Marek Jarnicki and Peter Pflug, Invariant distances and metrics in complex analysis, De Gruyter Expositions in Mathematics, vol. 9, Walter de Gruyter & Co., Berlin, 1993. MR 1242120, DOI 10.1515/9783110870312
- László Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), no. 4, 427–474 (French, with English summary). MR 660145, DOI 10.24033/bsmf.1948
- L. Lempert, Holomorphic retracts and intrinsic metrics in convex domains, Anal. Math. 8 (1982), no. 4, 257–261 (English, with Russian summary). MR 690838, DOI 10.1007/BF02201775
- Pierre Mazet, Principe du maximum et lemme de Schwarz à valeurs vectorielles, Canad. Math. Bull. 40 (1997), no. 3, 356–363 (French, with French summary). MR 1464844, DOI 10.4153/CMB-1997-042-9
- Jean-Pierre Vigué, Sur les points fixes d’applications holomorphes, C. R. Acad. Sci. Paris Sér. I Math. 303 (1986), no. 18, 927–930 (French, with English summary). MR 873396
- Jean-Pierre Vigué, Sur la caractérisation des isomorphismes analytiques entre domaines bornés d’un espace de Banach complexe, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 21 (1994), no. 1, 145–155 (French). MR 1276766
- Jean-Pierre Vigué, Un lemme de Schwarz pour les boules-unités ouvertes, Canad. Math. Bull. 40 (1997), no. 1, 117–128 (French, with English summary). MR 1443733, DOI 10.4153/CMB-1997-014-4
Bibliographic Information
- Marco Abate
- Affiliation: Dipartimento di Matematica, Università di Pisa, Largo Pontecorvo 5, 56127 Pisa, Italy
- Email: abate@dm.unipi.it
- Jean-Pierre Vigué
- Affiliation: LMA, Université de Poitiers, CNRS, Mathématiques, SP2MI, BP 30179, 86962 Futuroscope cedex, France
- Email: vigue@math.univ-poitiers.fr
- Received by editor(s): July 17, 2007
- Received by editor(s) in revised form: September 19, 2007
- Published electronically: May 20, 2008
- Communicated by: Mei-Chi Shaw
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 3905-3909
- MSC (2000): Primary 32H02
- DOI: https://doi.org/10.1090/S0002-9939-08-09391-X
- MathSciNet review: 2425730