Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Yunyan Yang
- Proc. Amer. Math. Soc. 136 (2008), 4095-4102
- DOI: https://doi.org/10.1090/S0002-9939-08-09398-2
- Published electronically: June 11, 2008
- PDF | Request permission
Abstract:
Let $(M,g)$ be a complete noncompact Riemannian manifold. In this paper, we derive a local gradient estimate for positive solutions to a simple nonlinear parabolic equation \[ \frac {\partial u}{\partial t}=\Delta u+au\log u+bu\] on $M\times [0,+\infty )$, where $a$, $b$ are two real constants. This equation is closely related to the gradient Ricci soliton. We extend the result of L. Ma (Journal of Functional Analysis 241 (2006) 374-382).References
- Saïd Asserda, Un théorème de Liouville pour l’opérateur de Schrödinger avec dérive, C. R. Math. Acad. Sci. Paris 342 (2006), no. 6, 393–398 (French, with English and French summaries). MR 2209217, DOI 10.1016/j.crma.2006.01.007
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- E. Calabi, An extension of E. Hopf’s maximum principle with an application to Riemannian geometry, Duke Math. J. 25 (1958), 45–56. MR 92069, DOI 10.1215/S0012-7094-58-02505-5
- S. Y. Cheng and S. T. Yau, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math. 28 (1975), no. 3, 333–354. MR 385749, DOI 10.1002/cpa.3160280303
- Richard S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982), no. 2, 255–306. MR 664497
- Jiayu Li, Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds, J. Funct. Anal. 100 (1991), no. 2, 233–256. MR 1125225, DOI 10.1016/0022-1236(91)90110-Q
- Peter Li and Shing-Tung Yau, On the parabolic kernel of the Schrödinger operator, Acta Math. 156 (1986), no. 3-4, 153–201. MR 834612, DOI 10.1007/BF02399203
- Li Ma, Gradient estimates for a simple elliptic equation on complete non-compact Riemannian manifolds, J. Funct. Anal. 241 (2006), no. 1, 374–382. MR 2264255, DOI 10.1016/j.jfa.2006.06.006
- Antonios D. Melas, A Liouville type theorem for the Schrödinger operator, Proc. Amer. Math. Soc. 127 (1999), no. 11, 3353–3359. MR 1623036, DOI 10.1090/S0002-9939-99-05026-1
- E. R. Negrín, Gradient estimates and a Liouville type theorem for the Schrödinger operator, J. Funct. Anal. 127 (1995), no. 1, 198–203. MR 1308622, DOI 10.1006/jfan.1995.1008
- Peter Topping, Lectures on the Ricci flow, London Mathematical Society Lecture Note Series, vol. 325, Cambridge University Press, Cambridge, 2006. MR 2265040, DOI 10.1017/CBO9780511721465
- Shing Tung Yau, Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201–228. MR 431040, DOI 10.1002/cpa.3160280203
Bibliographic Information
- Yunyan Yang
- Affiliation: Department of Mathematics, Information School, Renmin University of China, Beijing 100872, People’s Republic of China
- Email: yunyanyang@ruc.edu.cn
- Received by editor(s): April 19, 2007
- Received by editor(s) in revised form: October 13, 2007
- Published electronically: June 11, 2008
- Additional Notes: The author was supported in part by the NSFC 10601065
- Communicated by: Richard A. Wentworth
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 4095-4102
- MSC (2000): Primary 58J05, 58J35
- DOI: https://doi.org/10.1090/S0002-9939-08-09398-2
- MathSciNet review: 2425752