On the $\overline {\mu }$–invariant of rational surface singularities
HTML articles powered by AMS MathViewer
- by András I. Stipsicz
- Proc. Amer. Math. Soc. 136 (2008), 3815-3823
- DOI: https://doi.org/10.1090/S0002-9939-08-09439-2
- Published electronically: May 28, 2008
- PDF | Request permission
Abstract:
We show that for rational surface singularities with odd determinant the $\overline {\mu }$–invariant defined by W. Neumann is an obstruction for the link of the singularity to bound a rational homology 4–ball. We identify the $\overline {\mu }$–invariant with the corresponding correction term in Heegaard Floer theory.References
- Andrew J. Casson and John L. Harer, Some homology lens spaces which bound rational homology balls, Pacific J. Math. 96 (1981), no. 1, 23–36. MR 634760, DOI 10.2140/pjm.1981.96.23
- Ronald Fintushel and Ronald J. Stern, Rational blowdowns of smooth $4$-manifolds, J. Differential Geom. 46 (1997), no. 2, 181–235. MR 1484044
- Ronald Fintushel and Ronald J. Stern, A $\mu$-invariant one homology $3$-sphere that bounds an orientable rational ball, Four-manifold theory (Durham, N.H., 1982) Contemp. Math., vol. 35, Amer. Math. Soc., Providence, RI, 1984, pp. 265–268. MR 780582, DOI 10.1090/conm/035/780582
- David E. Galewski and Ronald J. Stern, Classification of simplicial triangulations of topological manifolds, Ann. of Math. (2) 111 (1980), no. 1, 1–34. MR 558395, DOI 10.2307/1971215
- Robert E. Gompf and András I. Stipsicz, $4$-manifolds and Kirby calculus, Graduate Studies in Mathematics, vol. 20, American Mathematical Society, Providence, RI, 1999. MR 1707327, DOI 10.1090/gsm/020
- Hans Grauert, Über Modifikationen und exzeptionelle analytische Mengen, Math. Ann. 146 (1962), 331–368 (German). MR 137127, DOI 10.1007/BF01441136
- J. Greene and S. Jabuka, The slice–ribbon conjecture for $3$–stranded pretzel knots, arXiv:0706.3398.
- Stanislav Jabuka and Swatee Naik, Order in the concordance group and Heegaard Floer homology, Geom. Topol. 11 (2007), 979–994. MR 2326940, DOI 10.2140/gt.2007.11.979
- Paolo Lisca and András I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds. I, Geom. Topol. 8 (2004), 925–945. MR 2087073, DOI 10.2140/gt.2004.8.925
- Paolo Lisca and András I. Stipsicz, Ozsváth-Szabó invariants and tight contact three-manifolds. II, J. Differential Geom. 75 (2007), no. 1, 109–141. MR 2282726
- P. Lisca and A. Stipsicz, Ozsváth–Szabó invariants and tight contact $3$–manifolds, III, J. Symplectic Geometry, to appear, arXiv:math.SG/0505493.
- P. Lisca and A. Stipsicz, On the existence of tight contact structures on Seifert fibered $3$–manifolds, arXiv:0709.0737
- András Némethi, On the Ozsváth-Szabó invariant of negative definite plumbed 3-manifolds, Geom. Topol. 9 (2005), 991–1042. MR 2140997, DOI 10.2140/gt.2005.9.991
- Walter D. Neumann, An invariant of plumbed homology spheres, Topology Symposium, Siegen 1979 (Proc. Sympos., Univ. Siegen, Siegen, 1979), Lecture Notes in Math., vol. 788, Springer, Berlin, 1980, pp. 125–144. MR 585657
- Walter D. Neumann, A calculus for plumbing applied to the topology of complex surface singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981), no. 2, 299–344. MR 632532, DOI 10.1090/S0002-9947-1981-0632532-8
- Peter Ozsváth and Zoltán Szabó, Absolutely graded Floer homologies and intersection forms for four-manifolds with boundary, Adv. Math. 173 (2003), no. 2, 179–261. MR 1957829, DOI 10.1016/S0001-8708(02)00030-0
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158. MR 2113019, DOI 10.4007/annals.2004.159.1027
- Peter Ozsváth and Zoltán Szabó, Holomorphic disks and three-manifold invariants: properties and applications, Ann. of Math. (2) 159 (2004), no. 3, 1159–1245. MR 2113020, DOI 10.4007/annals.2004.159.1159
- Peter Ozsváth and Zoltán Szabó, On the Floer homology of plumbed three-manifolds, Geom. Topol. 7 (2003), 185–224. MR 1988284, DOI 10.2140/gt.2003.7.185
- Jongil Park, Seiberg-Witten invariants of generalised rational blow-downs, Bull. Austral. Math. Soc. 56 (1997), no. 3, 363–384. MR 1490654, DOI 10.1017/S0004972700031154
- Nikolai Saveliev, Fukumoto-Furuta invariants of plumbed homology 3-spheres, Pacific J. Math. 205 (2002), no. 2, 465–490. MR 1922741, DOI 10.2140/pjm.2002.205.465
- A. Stipsicz, Z. Szabó and J. Wahl, Rational blow–downs and smoothings of surface singularities, J. Topology 1 (2008) 477–517.
Bibliographic Information
- András I. Stipsicz
- Affiliation: Rényi Institute of Mathematics, H-1053 Budapest, Reáltanoda utca 13–15, Hungary - and - Department of Mathematics, Columbia University, New York, New York 10027
- MR Author ID: 346634
- Email: stipsicz@math-inst.hu, stipsicz@math.columbia.edu
- Received by editor(s): September 28, 2007
- Published electronically: May 28, 2008
- Communicated by: Daniel Ruberman
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 3815-3823
- MSC (2000): Primary 14J17, 57M27
- DOI: https://doi.org/10.1090/S0002-9939-08-09439-2
- MathSciNet review: 2425720