Boundary $C^*$-algebras for acylindrical groups
HTML articles powered by AMS MathViewer
- by Guyan Robertson
- Proc. Amer. Math. Soc. 136 (2008), 3851-3860
- DOI: https://doi.org/10.1090/S0002-9939-08-09453-7
- Published electronically: June 3, 2008
- PDF | Request permission
Abstract:
Let $\Delta$ be an infinite, locally finite tree with more than two ends. Let $\Gamma <\operatorname {Aut}(\Delta )$ be an acylindrical uniform lattice. Then the boundary algebra $\mathcal {A}_\Gamma = C(\partial \Delta )\rtimes \Gamma$ is a simple Cuntz-Krieger algebra whose K-theory is determined explicitly.References
- Claire Anantharaman-Delaroche, Systèmes dynamiques non commutatifs et moyennabilité, Math. Ann. 279 (1987), no. 2, 297–315 (French). MR 919508, DOI 10.1007/BF01461725
- Anne Broise-Alamichel and Frédéric Paulin, Sur le codage du flot géodésique dans un arbre, Ann. Fac. Sci. Toulouse Math. (6) 16 (2007), no. 3, 477–527 (French, with English and French summaries). MR 2379050, DOI 10.5802/afst.1157
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330, DOI 10.1007/BF01625776
- Joachim Cuntz, $K$-theory for certain $C^{\ast }$-algebras, Ann. of Math. (2) 113 (1981), no. 1, 181–197. MR 604046, DOI 10.2307/1971137
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
- Joachim Cuntz and Wolfgang Krieger, A class of $C^{\ast }$-algebras and topological Markov chains, Invent. Math. 56 (1980), no. 3, 251–268. MR 561974, DOI 10.1007/BF01390048
- Su Shing Chen, Limit sets of automorphism groups of a tree, Proc. Amer. Math. Soc. 83 (1981), no. 2, 437–441. MR 624949, DOI 10.1090/S0002-9939-1981-0624949-8
- Pierre de la Harpe, Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2000. MR 1786869
- Eberhard Kirchberg, Exact $\textrm {C}^*$-algebras, tensor products, and the classification of purely infinite algebras, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 943–954. MR 1403994
- Guyan Robertson, Boundary actions for affine buildings and higher rank Cuntz-Krieger algebras, $C^*$-algebras (Münster, 1999) Springer, Berlin, 2000, pp. 182–202. MR 1798597
- Guyan Robertson, Boundary operator algebras for free uniform tree lattices, Houston J. Math. 31 (2005), no. 3, 913–935. MR 2148805
- Guyan Robertson and Tim Steger, Affine buildings, tiling systems and higher rank Cuntz-Krieger algebras, J. Reine Angew. Math. 513 (1999), 115–144. MR 1713322, DOI 10.1515/crll.1999.057
- Z. Sela, Acylindrical accessibility for groups, Invent. Math. 129 (1997), no. 3, 527–565. MR 1465334, DOI 10.1007/s002220050172
- Jean-Pierre Serre, Trees, Springer-Verlag, Berlin-New York, 1980. Translated from the French by John Stillwell. MR 607504, DOI 10.1007/978-3-642-61856-7
Bibliographic Information
- Guyan Robertson
- Affiliation: School of Mathematics and Statistics, University of Newcastle, NE1 7RU, United Kingdom
- Email: a.g.robertson@newcastle.ac.uk
- Received by editor(s): June 29, 2007
- Received by editor(s) in revised form: October 5, 2007
- Published electronically: June 3, 2008
- Communicated by: Marius Junge
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 3851-3860
- MSC (2000): Primary 20E08, 46L80
- DOI: https://doi.org/10.1090/S0002-9939-08-09453-7
- MathSciNet review: 2425724