A BANACH-STONE THEOREM FOR RIESZ ISOMORPHISMS OF BANACH LATTICES

JIN XI CHEN, ZI LI CHEN, AND NGAI-CHING WONG

(Communicated by N. Tomczak-Jaegermann)

Abstract. Let X and Y be compact Hausdorff spaces, and E, F be Banach lattices. Let $C(X,E)$ denote the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. We prove that if there exists a Riesz isomorphism $\Phi : C(X,E) \to C(Y,F)$ such that Φf is non-vanishing on Y if and only if f is non-vanishing on X, then X is homeomorphic to Y, and E is Riesz isomorphic to F. In this case, Φ can be written as a weighted composition operator: $\Phi f(y) = \Pi(y)(\varphi(y)f(\varphi(y)))$, where φ is a homeomorphism from Y onto X, and $\Pi(y)$ is a Riesz isomorphism from E onto F for every y in Y. This generalizes some known results obtained recently.

1. Introduction

Let X and Y be compact Hausdorff spaces, and $C(X)$, $C(Y)$ denote the spaces of real-valued continuous functions defined on X, Y respectively. There are three versions of the Banach-Stone theorem. That is to say, surjective linear isometries, ring isomorphisms and lattice isomorphisms from $C(X)$ onto $C(Y)$ yield homeomorphisms between X and Y, respectively (cf. [1, 6, 14]).

Jerison [13] got the first vector-valued version of the Banach-Stone theorem. He proved that if the Banach space E is strictly convex, then every surjective linear isometry $\Phi : C(X,E) \to C(Y,E)$ can be written as a weighted composition operator

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \quad \forall f \in C(X,E), \forall y \in Y.$$

Here φ is a homeomorphism from Y onto X, and Π is a continuous map from Y into the space $(L(E,E), SOT)$ of bounded linear operators on E equipped with the strong operator topology (SOT). Furthermore, $\Pi(y)$ is a surjective linear isometry on E for every y in Y. After Jerison [13], many vector-valued versions of the Banach-Stone theorem have been obtained in different ways (see, e.g., [3, 4, 5, 7, 9, 10, 12, 15]).

Let E, F be non-zero real Banach lattices, and $C(X,E)$ be the Banach lattice of all continuous E-valued functions on X equipped with the pointwise ordering and the sup norm. Note that, in general, a Riesz isomorphism (i.e., lattice isomorphism) from $C(X,E)$ onto $C(Y,F)$ does not necessarily induce a topological
homeomorphism from \(X \) onto \(Y \) (cf. [16] Example 3.5)). To consider the Banach-Stone theorems for continuous Banach lattice-valued functions, we would like to mention the papers [3, 7, 16]. In particular, when \(E, F \) are both Banach lattices and Riesz algebras, Miao, Cao and Xiong [16] recently proved that if \(F \) has no zero-divisor and there exists a Riesz algebraic isomorphism \(\Phi : C(X, E) \rightarrow C(Y, F) \) such that \(\Phi f \) is non-vanishing on \(Y \) if \(f \) is non-vanishing on \(X \), then \(X \) is homeomorphic to \(Y \), and \(E \) is Riesz algebraically isomorphic to \(F \). By saying \(f \) in \(C(X, E) \) is non-vanishing, we mean that \(0 \notin f(X) \). Indeed, under these conditions they obtained that \(\Phi^{-1}g \) is non-vanishing on \(X \) if \(g \in C(Y, F) \) is non-vanishing on \(Y \). Note that every Riesz algebraic isomorphism must be a Riesz isomorphism.

Let \(E \) and \(F \) be Banach lattices. More recently, Ercan and Önal [7] have established that if \(F \) is an AM-space with unit, i.e., a \(C(K) \)-space, and there exists a Riesz isomorphism \(\Phi : C(X, E) \rightarrow C(Y, F) \) such that \(\Phi f \) is non-vanishing on \(Y \) if and only if \(f \) is non-vanishing on \(X \), then \(X \) is homeomorphic to \(Y \) and \(E \) is Riesz isomorphic to \(F \).

Inspired by [5, 7, 16], one can ask a natural question:

Question 1. Is \(X \) homeomorphic to \(Y \) if \(E, F \) are Banach lattices and there exists a Riesz isomorphism \(\Phi : C(X, E) \rightarrow C(Y, F) \) such that both \(\Phi \) and \(\Phi^{-1} \) are non-vanishing preserving?

In this paper we show the answer to the above question is affirmative. Moreover, in this case \(\Phi \) can be written as a weighted composition operator:

\[
\Phi f(y) = \Pi(y)(f(\varphi(y))), \quad \forall f \in C(X, E), \forall y \in Y,
\]

where \(\varphi \) is a homeomorphism from \(X \) onto \(Y \), and \(\Pi(y) \) is a Riesz isomorphism from \(E \) onto \(F \) for every \(y \) in \(Y \). This generalizes the results obtained by Cao, Reilly and Xiong [9], Miao, Cao, and Xiong [16], and Ercan and Önal [7].

Our notions are standard. For the undefined notions and basic facts concerning Banach lattices we refer the reader to the monographs [1, 2, 14].

2. A Banach-Stone Theorem for Riesz Isomorphisms

In the following we always assume \(X \) and \(Y \) are compact Hausdorff spaces, \(E \) and \(F \) are non-zero Banach lattices, and \(L(E, F) \) is the space of bounded linear operators from \(E \) into \(F \) equipped with SOT. For \(x \) in \(X \) and \(y \) in \(Y \), let \(M_x \) and \(N_y \) be defined as

\[
M_x = \{ f \in C(X, E) : f(x) = 0 \}, \quad N_y = \{ g \in C(Y, F) : g(y) = 0 \}.
\]

Clearly, \(M_x \) and \(N_y \) are closed (order) ideals in \(C(X, E) \) and \(C(Y, F) \), respectively.

Lemma 2. Let \(\Phi : C(X, E) \rightarrow C(Y, F) \) be a Riesz isomorphism such that \(\Phi(f) \) is non-vanishing on \(Y \) if and only if \(f \) is non-vanishing on \(X \). Then for each \(x \) in \(X \) there exists a unique \(y \) in \(Y \) such that

\[
\Phi M_x = N_y.
\]

In particular, this defines a bijection \(\varphi \) from \(Y \) onto \(X \) by \(\varphi(y) = x \).

Proof. For each \(x \) in \(X \), let

\[
Z(\Phi M_x) = \{ y \in Y : \Phi f(y) = 0 \text{ for all } f \in M_x \}.
\]

We first claim that \(Z(\Phi M_x) \) is non-empty. Suppose, on the contrary, that \(Z(\Phi M_x) \) is empty. Then for each \(y \) in \(Y \) there would exist an \(f_y \) in \(M_x \) such that \(\Phi f_y(y) \neq 0 \),
and thus Φf_y is non-vanishing in an open neighborhood of y. Note that $|f_y| \in M_x$, and $\Phi |f_y| = |\Phi f_y|$ since Φ is a Riesz isomorphism. Therefore, we can assume further that both f_y and Φf_y are positive by replacing them by their absolute values if necessary. By the compactness of Y, we can choose finitely many f_1, \ldots, f_n from M_x^+ such that the positive functions $\Phi f_1, \ldots, \Phi f_n$ have no common zero in Y. Hence $\Phi (f_1 + \cdots + f_n)$ is strictly positive; that is, $\Phi (f_1 + \cdots + f_n)(y) > 0$ for each y in Y. This contradicts the fact that $f_1 + \cdots + f_n$ vanishes at x. We thus prove that $Z(\Phi M_x) \neq \phi$.

Next, we claim that $Z(\Phi M_x)$ is a singleton. Indeed, if $y_1, y_2 \in Z(\Phi M_x)$, then we would have $\Phi M_x \subseteq N_{y_1}$, $i = 1, 2$. Applying the above argument to Φ^{-1}, we shall have $\Phi^{-1} N_{y_i} \subseteq M_{x_i}$, for some x_i in X, $i = 1, 2$. It follows that $\Phi M_x \subseteq N_{y_i} \subseteq \Phi M_{x_i}$, $i = 1, 2$. Then $x = x_1 = x_2$ since Φ is bijective and X is Hausdorff. Thus,

$$y_1 = y_2 \quad \text{and} \quad \Phi M_x = N_{y_1} = N_{y_2}.$$

Now, we can define a bijective map $\varphi : Y \rightarrow X$ such that $\Phi M_{\varphi(y)} = N_y$, $\forall y \in Y$. \hfill \square

The following main result answers affirmatively the question mentioned in the introduction and solves the conjecture of Ercan and "Onal in [7].

Theorem 3. Let $\Phi : C(X, E) \rightarrow C(Y, F)$ be a Riesz isomorphism such that Φf is non-vanishing on Y if and only if f is non-vanishing on X. Then Y is homeomorphic to X, and Φ can be written as a weighted composition operator

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \quad \forall f \in C(X, E), \forall y \in Y.$$

Here φ is a homeomorphism from Y onto X, and $\Pi(y)$ is a Riesz isomorphism from E onto F for every y in Y. Moreover, $\Pi : Y \rightarrow (\mathcal{L}(E, F), SOT)$ is continuous, and $\|\Phi\| = \sup_{y \in Y} \|\Pi(y)\|$.

Proof. First, we show that the bijection φ given in Lemma 2 is a homeomorphism from Y onto X. It suffices to verify the continuity of φ since Y is compact and X is Hausdorff. To this end, suppose, to the contrary, that there would exist a net $\{y_\lambda\}$ in Y converging to y_0 in Y, but $\varphi(y_\lambda)$ converges to $x_0 \neq \varphi(y_0)$ in X.

Let U_{x_0} and $U_{\varphi(y_0)}$ be disjoint open neighborhoods of x_0 and $\varphi(y_0)$, respectively. First, for any f in $C(X, E)$ vanishing outside $U_{\varphi(y_0)}$, we claim that $\Phi f(y_0) = 0$. Indeed, since $\varphi(y_\lambda)$ belongs to U_{x_0} for λ large enough and $f(x) = 0$ for any x in U_{x_0}, we have that $f \in M_{\varphi(y_\lambda)}$. It follows from Lemma 2 that $\Phi f \in N_{y_\lambda}$; that is, $\Phi f(y_\lambda) = 0$ when λ is large enough. Thus, $\Phi f(y_0) = 0$ since $y_\lambda \rightarrow y_0$ and Φf is continuous.

Let $\chi \in C(X)$ such that χ vanishes outside $U_{\varphi(y_0)}$ and $\chi(\varphi(y_0)) = 1$. Then, for any h in $C(X, E)$, we have $h = \chi h + (1 - \chi)h$. Since χh vanishes outside $U_{\varphi(y_0)}$, by the above argument, we can see that $\Phi(\chi h)(y_0) = 0$. Clearly, $\Phi((1 - \chi)h)$ vanishes at y_0 since $(1 - \chi)h \in M_{\varphi(y_0)}$. Thus, $\Phi h(y_0) = \Phi(\chi h)(y_0) + \Phi((1 - \chi)h)(y_0) = 0$ for any h in $C(X, E)$. This leads to a contradiction since Φ is surjective. So φ is continuous and thus a homeomorphism from Y onto X satisfying $\Phi M_{\varphi(y)} = N_y$ for each y in Y.

Next, note that ker $\delta_{\varphi}(y) = \ker \delta_{y} \circ \Phi$, where δ_{y} is the Dirac functional. Hence, there is a linear operator $\Pi(y) : E \to F$ such that $\delta_{y} \circ \Phi = \Pi(y) \circ \delta_{\varphi(y)}$. In other words,

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \quad \forall f \in C(X,E), \forall y \in Y.$$

See, e.g., [8, p. 67].

It is routine to verify the other assertions in the statement of this theorem. For the convenience of the reader, we give a sketch of the rest of the proof. For e in E, let $1_{X} \otimes e \in C(X,E)$ be defined by $(1_{X} \otimes e)(x) = e$ for each x in X. Let y in Y be fixed. If $e \neq 0$, then $\Pi(y)e = \Pi(y)((1_{X} \otimes e)(\varphi(y))) = \Phi(1_{X} \otimes e)(y) \neq 0$ since $1_{X} \otimes e$ is non-vanishing. Hence, $\Pi(y)$ is one-to-one. On the other hand, for u in F we can find a function f in $C(X,E)$ such that $\Phi f = 1_{Y} \otimes u$ by the surjectivity of Φ. Let $e = f(\varphi(y))$. Then $\Pi(y)e = \Pi(y)(f(\varphi(y))) = \Phi f(y) = u$. That is, $\Pi(y)$ is surjective. To see that $\Pi(y)$ is a Riesz isomorphism, let $e_{1}, e_{2} \in E$. Then $\Pi(y)(e_{1} \vee e_{2}) = \Phi(1_{X} \otimes (e_{1} \vee e_{2})')(y) = \Phi(1_{X} \otimes e_{1})(y) \vee \Phi(1_{X} \otimes e_{2})(y) = \Pi(y)e_{1} \vee \Pi(y)e_{2}$, since Φ is a Riesz isomorphism.

Recall that every positive operator between Banach lattices is continuous. Let $e \in E$. Since $\|\Pi(y)e\| = \|\Phi(1_{X} \otimes e)(y)\| \leq \|\Phi(1_{X} \otimes e)\| \leq \|\Phi\|\|e\|$, we have $\|\Pi(y)\| \leq \|\Phi\|$ for all y in Y. On the other hand, for any f in $C(X,E)$ and any y in Y, we can see that $\|\Phi f(y)\| = \|\Pi(y)(f(\varphi(y)))\| \leq \|\Pi(y)\||f||$. Consequently,

$$\|\Pi(y)\| \leq \sup_{y \in Y} \|\Pi(y)\|.$$

Finally, we prove that $\Pi : Y \to (C(E,F), SOT)$ is continuous. To this end, let $\{y_{\lambda}\}$ be a net such that $y_{\lambda} \to y$ in Y. Then, for any e in E, $\|\Pi(y_{\lambda})e - \Pi(y)e\| = \|\Phi(1_{X} \otimes e)(y_{\lambda}) - \Phi(1_{X} \otimes e)(y)\| \to 0$, since $\Phi(1_{X} \otimes e)$ is continuous on Y.

In the above results, we have to assume that both Φ and Φ^{-1} are non-vanishing preserving. In the following example, we can see that the inverse of a non-vanishing preserving Riesz isomorphism is not necessarily non-vanishing preserving.

Example 4. Let $X = \{1,2\}$ be equipped with the discrete topology, let $E = \mathbb{R}$ have its usual ordering and norm, and let $Y = \{0\}$ and $F = \mathbb{R}^{2}$ with the pointwise ordering and the sup norm. Define $\Phi : C(X,E) \to C(Y,F)$ by $\Phi f(0) = (f(1), f(2))$. Clearly, the Riesz isometric isomorphism Φ is non-vanishing preserving, but its inverse Φ^{-1} is not.

Let E, F be both Banach lattices and Riesz algebras. Miao, Cao and Xiong [16] recently proved that if F has no zero-divisor and there exists a Riesz algebraic isomorphism $\Phi : C(X,E) \to C(Y,F)$ such that Φf is non-vanishing on Y if f is non-vanishing on X, then X is homeomorphic to Y and E is Riesz algebraically isomorphic to F. In fact, from their proof we can see that Φf is non-vanishing on Y if and only if f is non-vanishing on X; that is, both Φ and Φ^{-1} are non-vanishing preserving. Therefore, the result of Miao, Cao and Xiong can be restated as follows.

Corollary 5 (16). Let E, F be both Banach lattices and Riesz algebras. If F has no zero-divisor and $\Phi : C(X,E) \to C(Y,F)$ is a Riesz algebraic isomorphism such that Φf is non-vanishing on Y if f is non-vanishing on X, then Φ is a weighted composition operator

$$\Phi f(y) = \Pi(y)(f(\varphi(y))), \quad \forall f \in C(X,E), \forall y \in Y.$$

Here φ is a homeomorphism from Y onto X, and $\Pi(y)$ is a Riesz algebraic isomorphism from E onto F for every y in Y.

In Theorem 3 when \(X, Y \) are compact Hausdorff spaces and \(E = F = \mathbb{R} \), the lattice hypothesis about \(\Phi \) can be dropped.

Example 6. Let \(X, Y \) be compact Hausdorff spaces, and \(C(X), C(Y) \) be the Banach spaces of continuous real-valued functions defined on \(X, Y \), respectively. Assume \(\Phi : C(X) \to C(Y) \) is a linear map such that \(\Phi f \) is non-vanishing on \(Y \) if and only if \(f \) is non-vanishing on \(X \).

Note that \((\Phi f_1 X)^{-1} \Phi \) is a unital linear map preserving non-vanishing. Let \(\lambda \) be in the range of \(f \). Then \(f - \lambda \mathbf{1}_X \) is not invertible, and thus neither is \((\Phi f_1 X)^{-1} \Phi f - \lambda \mathbf{1}_Y \). It follows that \(\lambda \) is in the range of \((\Phi f_1 X)^{-1} \Phi f \). The converse also holds. Therefore, the range of \((\Phi f_1 X)^{-1} \Phi f \) coincides with the range of \(f \) for each \(f \) in \(C(X) \). In particular, \((\Phi f_1 X)^{-1} \Phi \) is a unital linear isometry from \(C(X) \) into \(C(Y) \). By the Holsztyński Theorem [11], there is a compact subset \(Y_0 \) of \(Y \) and a quotient map \(\varphi : Y_0 \to X \) such that

\[
(\Phi f_1 X)^{-1} \Phi f \big|_{Y_0} = f \circ \varphi, \quad \forall f \in C(X).
\]

In case \(\Phi \) is surjective, the classical Banach-Stone Theorem ensures that \(\varphi \) is a homeomorphism from \(Y = Y_0 \) onto \(X \). Moreover, if \(\Phi f_1 X \) is strictly positive on \(Y \), then \(\Phi \) is a Riesz isomorphism. However, when \(\Phi \) is not surjective the situation is a bit uncontrollable. For example, consider \(\Phi : C[0, 1] \to C([0, \frac{1}{2}] \cup [1, \frac{3}{2}]) \) defined by

\[
\Phi f(y) = \begin{cases}
 f(2y), & \text{if } 0 \leq y \leq 1/2; \\
 (2y - 2)f(0) + (3 - 2y)f(1), & \text{if } 1 \leq y \leq \frac{3}{2}.
\end{cases}
\]

Clearly, the thus defined \(\Phi \) is a non-surjective linear isometry preserving non-vanishing in two ways, but \([0, 1] \) is not homeomorphic to \([0, \frac{1}{2}] \cup [1, \frac{3}{2}] \).

Finally, we borrow an example from [15] which shows that the surjectivity cannot be guaranteed by many other properties we usually consider.

Example 7. Let \(\omega \) and \(\omega_1 \) be the first infinite and the first uncountable ordinal numbers, respectively. Let \([0, \omega_1] \) be the compact Hausdorff space consisting of all ordinal numbers \(x \) not greater than \(\omega_1 \) and equipped with the topology generated by order intervals. Note that every continuous function \(f \) in \(C[0, \omega_1] \) is eventually constant. More precisely, there is a non-limit ordinal \(x_f \) such that \(\omega < x_f < \omega_1 \) and \(f(x) = f(\omega_1) \) for all \(x \geq x_f \).

Define \(\phi : [0, \omega_1] \to [0, \omega_1] \) by setting

\[
\phi(0) = \omega_1, \quad \phi(n) = n - 1 \text{ for all } n = 1, 2, \ldots, \quad \text{and } \phi(x) = x \text{ for all } x \geq \omega.
\]

Let \(\Phi : C[0, \omega_1] \to C[0, \omega_1] \) be the non-surjective composition operator defined by \(\Phi f = f \circ \phi \). It is plain that \(\Phi \) is an isometric unital algebraic and lattice isomorphism from \(C[0, \omega_1] \) onto its range. In fact, one can see in [15, Example 3.3] that the map \(\Phi \) is a non-surjective linear \(n \)-local automorphism of \(C[0, \omega_1] \), where \(n = 1, 2, \ldots, \omega \); i.e., the action of \(\Phi \) on any set \(S \) of cardinality not greater than \(n \) agrees with an automorphism \(\Phi_S \).

Acknowledgment

The authors would like to thank the referee for comments which have improved this paper.
References

Department of Mathematics, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China

E-mail address: jinxichen@home.swjtu.edu.cn

Department of Mathematics, Southwest Jiaotong University, Chengdu 610031, People’s Republic of China

E-mail address: zlchen@home.swjtu.edu.cn

Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan

E-mail address: wong@math.nsysu.edu.tw