An $EL$-labeling of the subgroup lattice
HTML articles powered by AMS MathViewer
- by Russ Woodroofe
- Proc. Amer. Math. Soc. 136 (2008), 3795-3801
- DOI: https://doi.org/10.1090/S0002-9939-08-09586-5
- Published electronically: June 9, 2008
- PDF | Request permission
Abstract:
In a 2001 paper, Shareshian conjectured that the subgroup lattice of a finite, solvable group has an $EL$-labeling. We construct such a labeling and verify that our labeling has the expected properties.References
- Anders Björner, Shellable and Cohen-Macaulay partially ordered sets, Trans. Amer. Math. Soc. 260 (1980), no. 1, 159–183. MR 570784, DOI 10.1090/S0002-9947-1980-0570784-2
- Anders Björner and Michelle Wachs, On lexicographically shellable posets, Trans. Amer. Math. Soc. 277 (1983), no. 1, 323–341. MR 690055, DOI 10.1090/S0002-9947-1983-0690055-6
- Anders Björner and Michelle L. Wachs, Shellable nonpure complexes and posets. I, Trans. Amer. Math. Soc. 348 (1996), no. 4, 1299–1327. MR 1333388, DOI 10.1090/S0002-9947-96-01534-6
- Anders Björner and Michelle L. Wachs, Shellable nonpure complexes and posets. II, Trans. Amer. Math. Soc. 349 (1997), no. 10, 3945–3975. MR 1401765, DOI 10.1090/S0002-9947-97-01838-2
- Andreas Blass and Bruce E. Sagan, Möbius functions of lattices, Adv. Math. 127 (1997), no. 1, 94–123. MR 1445364, DOI 10.1006/aima.1997.1616
- Klaus Doerk and Trevor Hawkes, Finite soluble groups, De Gruyter Expositions in Mathematics, vol. 4, Walter de Gruyter & Co., Berlin, 1992. MR 1169099, DOI 10.1515/9783110870138
- Patricia Hersh and John Shareshian, Chains of modular elements and lattice connectivity, Order 23 (2006), no. 4, 339–342 (2007). MR 2309698, DOI 10.1007/s11083-006-9053-x
- Larry Shu-Chung Liu, Left-modular elements and edge labellings, Ph.D. thesis, Michigan State University, 1999.
- Shu-Chung Liu and Bruce E. Sagan, Left-modular elements of lattices, J. Combin. Theory Ser. A 91 (2000), no. 1-2, 369–385. In memory of Gian-Carlo Rota. MR 1780030, DOI 10.1006/jcta.2000.3102
- Peter McNamara and Hugh Thomas, Poset edge-labellings and left modularity, European J. Combin. 27 (2006), no. 1, 101–113. MR 2186421, DOI 10.1016/j.ejc.2004.07.010
- Derek J. S. Robinson, A course in the theory of groups, 2nd ed., Graduate Texts in Mathematics, vol. 80, Springer-Verlag, New York, 1996. MR 1357169, DOI 10.1007/978-1-4419-8594-1
- John Shareshian, On the shellability of the order complex of the subgroup lattice of a finite group, Trans. Amer. Math. Soc. 353 (2001), no. 7, 2689–2703. MR 1828468, DOI 10.1090/S0002-9947-01-02730-1
- Jacques Thévenaz, The top homology of the lattice of subgroups of a soluble group, Discrete Math. 55 (1985), no. 3, 291–303. MR 802667, DOI 10.1016/S0012-365X(85)80005-4
- Hugh Thomas, Graded left modular lattices are supersolvable, Algebra Universalis 53 (2005), no. 4, 481–489. MR 2219407, DOI 10.1007/s00012-005-1914-4
Bibliographic Information
- Russ Woodroofe
- Affiliation: Department of Mathematics, Washington University, St. Louis, Missouri 63130
- MR Author ID: 656572
- ORCID: 0000-0002-8199-3483
- Email: russw@math.wustl.edu
- Received by editor(s): September 19, 2007
- Published electronically: June 9, 2008
- Communicated by: Jim Haglund
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 3795-3801
- MSC (2000): Primary 06A07; Secondary 05E25, 20E15
- DOI: https://doi.org/10.1090/S0002-9939-08-09586-5
- MathSciNet review: 2425717