Cheeger’s constant in balls and isoperimetric inequality on Riemannian manifolds
HTML articles powered by AMS MathViewer
- by Joel García León
- Proc. Amer. Math. Soc. 136 (2008), 4445-4452
- DOI: https://doi.org/10.1090/S0002-9939-08-08824-2
- Published electronically: July 15, 2008
- PDF | Request permission
Abstract:
We prove isoperimetric inequality on a Riemannian manifold, assuming that the Cheeger constant for balls satisfies a certain estimation.References
- Werner Ballmann, Mikhael Gromov, and Viktor Schroeder, Manifolds of nonpositive curvature, Progress in Mathematics, vol. 61, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 823981, DOI 10.1007/978-1-4684-9159-3
- Isaac Chavel, Isoperimetric inequalities, Cambridge Tracts in Mathematics, vol. 145, Cambridge University Press, Cambridge, 2001. Differential geometric and analytic perspectives. MR 1849187
- Fan Chung, Alexander Grigor′yan, and Shing-Tung Yau, Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs, Comm. Anal. Geom. 8 (2000), no. 5, 969–1026. MR 1846124, DOI 10.4310/CAG.2000.v8.n5.a2
- Faber, C. Beweiss, das unter allen homogenen Membrane von gleicher Spannung die kreisförmige die tiefsten Grundton gibt. Sitzungsber.-Bayer. Akad. Wiss., Math.-Phys. Munich (1923), 169-172.
- García León, J. Cheeger Constant and Isoperimetric Inequalities on Riemannian Manifolds, Ph.D. thesis, Imperial College, London, 2005.
- Alexander Grigor′yan, Estimates of heat kernels on Riemannian manifolds, Spectral theory and geometry (Edinburgh, 1998) London Math. Soc. Lecture Note Ser., vol. 273, Cambridge Univ. Press, Cambridge, 1999, pp. 140–225. MR 1736868, DOI 10.1017/CBO9780511566165.008
- E. Krahn, Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises, Math. Ann. 94 (1925), no. 1, 97–100 (German). MR 1512244, DOI 10.1007/BF01208645
- Vladimir G. Maz’ja, Sobolev spaces, Springer Series in Soviet Mathematics, Springer-Verlag, Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova. MR 817985, DOI 10.1007/978-3-662-09922-3
- J. H. Michael and L. M. Simon, Sobolev and mean-value inequalities on generalized submanifolds of $R^{n}$, Comm. Pure Appl. Math. 26 (1973), 361–379. MR 344978, DOI 10.1002/cpa.3160260305
- Robert Osserman, Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), 1092–1120. MR 276875, DOI 10.1090/S0002-9904-1969-12357-8
- G. Pólya and G. Szegö, Isoperimetric Inequalities in Mathematical Physics, Annals of Mathematics Studies, No. 27, Princeton University Press, Princeton, N. J., 1951. MR 0043486
- John William Strutt Rayleigh Baron, The Theory of Sound, Dover Publications, New York, N.Y., 1945. 2d ed. MR 0016009
Bibliographic Information
- Joel García León
- Affiliation: Department of Mathematics, Imperial College, London, SW7 2BZ, United Kingdom
- Address at time of publication: Departamento de Matemáticas, Facultad de Ciencias, UNAM, México, D. F., México
- Email: jgarcia@servidor.unam.mx
- Received by editor(s): August 3, 2005
- Received by editor(s) in revised form: October 20, 2005
- Published electronically: July 15, 2008
- Additional Notes: The author was supported in part by CONACyT, México
- Communicated by: Richard A. Wentworth
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 4445-4452
- MSC (2000): Primary 58Cxx
- DOI: https://doi.org/10.1090/S0002-9939-08-08824-2
- MathSciNet review: 2431061
Dedicated: To Veronica, Emiliano and Camilo