NUMERICAL PEAK POINTS AND NUMERICAL ŠILOV BOUNDARY FOR HOLOMORPHIC FUNCTIONS

SUNG GUEN KIM

(Communicated by N. Tomczak-Jaegermann)

Abstract. In this paper, we characterize the numerical and numerical strong-peak points for $A_\infty(B_E : F)$ when E is the complex space l_1 or $C(K)$. We also prove that $\{(x, x^*) \in \Pi(l_1) : |x^*(e_n)| = 1 \text{ for all } n \in \mathbb{N}\}$ is the numerical Šilov boundary for $A_\infty(l_1 : l_1)$.

1. Introduction

Throughout this paper we will just consider complex Banach spaces. For a Banach space E, S_E and B_E will be the unit sphere and the closed unit ball of E, respectively. If E and F are Banach spaces, $C_b(B_E : F)$ denotes the Banach space of the bounded continuous functions $f : B_E \to F$, endowed with the supremum norm. In the case that $F = \mathbb{C}$, we write $C_b(B_E)$. An N-homogeneous polynomial P from E to F is a mapping such that there is an N-linear (and bounded) mapping L from E to F satisfying

$$P(x) = L(x, \ldots, x), \quad \forall x \in E.$$

The set of all N-homogenous polynomials from E to F is denoted by $P^N(E : F)$. We denote by $A_\infty(B_E : F)$ the Banach space of the bounded continuous function $f : B_E \to F$ such that f is holomorphic on the open unit ball, endowed with the supremum norm. If $F = \mathbb{C}$, we write $A_\infty(B_E)$. A result of Šilov asserts that if A is a unital separating subalgebra of $C(K)$ (K is a compact Hausdorff topological space), there is a smallest closed subset $S \subset K$ such that every function of A attains its norm at some point of S ([7], Theorem I.4.2). Bishop [5] proved that if K is metrizable, in fact, there is a minimal subset of K satisfying the above condition for every separating subalgebra of $C(K)$. That subset is the set of peak points for A. Globevnik [8] introduced the corresponding concepts of the boundary of a subalgebra A of $C_0(\Omega)$, the set of bounded and continuous functions on a topological space Ω not necessarily compact, and studied

2000 Mathematics Subject Classification. Primary 46A22; Secondary 46G25.

Key words and phrases. Numerical peak points, numerical Šilov boundaries.

The author thanks the referee for invaluable suggestions and for help with an earlier version of this paper.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication

4339
A \subset C

from a bounded and holomorphic function defined on a Banach space and the corresponding boundaries for \(\Omega = B_{c_0} \) and \(A \) a certain space of holomorphic functions. A subset \(B \subset E \) is a boundary for a subspace \(A \subset C_b(B_E) \) if

\[
\|f\| = \sup_{z \in B} |f(z)|, \quad \forall f \in A.
\]

An element \(x \in S_E \) is called a peak point for \(A \) if there exists \(h \in A \) such that \(|h(x)| = \|h\|_{B_E} \) and \(|h(z)| < \|h\|_{B_E} \) for every \(z \in B_E \setminus \{x\} \). In this case we say that \(h \) peaks at \(x \). A peak point \(x \) is called a strong peak point for \(A \) if there exists \(h \in A \) such that \(|h(x)| = \|h\|_{B_E} \) and, given \(\epsilon > 0 \), there exists a \(\delta > 0 \) such that for every \(z \in B_E \) with \(\|z - x\| > \epsilon \), we have \(|h(z)| < \|h\|_{B_E} - \delta \). In this case we say that \(h \) peaks strongly at \(x \).

In 1971, Harris [3] introduced the definition of a spatial numerical range for a bounded and holomorphic function defined on a Banach space and the corresponding concept of numerical radius. The spatial numerical range of a bounded function \(f \) from \(B_E \) to \(E \) is given by

\[
W(f) := \{ x^* (f(x)) : (x, x^*) \in \Pi(E) \},
\]

where we denoted by \(\Pi(E) \) the following subset:

\[
\Pi(E) := \{ (x, x^*) \in S_E \times S_E^* : x^*(x) = 1 \}.
\]

The numerical radius \(v(f) \) is just the number

\[
v(f) := \sup \{ |\lambda| : \lambda \in W(f) \}.
\]

For more background and information about numerical ranges and radii, we refer the reader to [6]. For a linear space \(A \subset C_b(B_E : E) \), M. Acosta and the author [3] gave the corresponding definition of numerical boundary for \(A \). We say that \(B \subset \Pi(E) \) is called a numerical boundary for \(A \) if

\[
\sup_{(x, x^*) \in B} |x^* (f(x))| = v(f), \quad \forall f \in A.
\]

In the case that \(B \) is a \((\| \| \times \| \cdot \|) \)-closed numerical boundary for \(A \) that is minimal under the previous conditions, \(B \) is said to be the numerical \(\check{S} \)ilov boundary. In [3], the authors studied numerical boundaries for holomorphic functions on some classical Banach spaces. Parallel to the concepts of peak and strong peak-points, we introduce the corresponding definition of numerical and numerical strong-peak points. An element \((x, x^*) \in \Pi(E) \) is called a numerical peak point for \(A \) if there exists \(h \in A \) such that \(|x^* (h(x))| = v(h) \) and \(|z^* (h(z))| < v(h) \) for every \((z, z^*) \in \Pi(E) \setminus \{(x, x^*)\} \). In this case we say that \(h \) peaks numerically at \((x, x^*) \). Also, \((x, x^*) \in \Pi(E) \) is called a numerical strong-peak point for \(A \) if there exists a function \(h \in A \) such that \(|x^* (h(x))| = v(h) \), and for any \((x_n, x_n^*) \in \Pi(E) \) with \(\lim_{n \to \infty} x_n^* (h(x_n)) = v(h) \) we have that \(x_n \to x \) in norm and \(x_n^* \to x^* \) in \(w^* \)-topology. In this case we say that \(h \) peaks strongly numerically at \((x, x^*) \). It is clear that every numerical strong-peak point is a numerical peak point. Note that if \(E \) is a finite dimensional space, then every numerical peak point is also a numerical strong-peak point. It is immediate from definition that every \((\| \| \times \| \cdot \|) \)-closed numerical boundary for \(A_{\infty}(B_E : E) \) contains all numerical strong-peak points.

In Section 2, we characterize the numerical peak points for \(A_{\infty}(B_{l_1} : l_1) \) and prove that every numerical peak point for \(A_{\infty}(B_{l_1} : l_1) \) is also a numerical strong-peak point. We prove that \(\{(x, x^*) \in \Pi(l_1) : |x^*(e_n)| = 1 \text{ for all } n \in \mathbb{N}\} \) is the numerical \(\check{S} \)ilov boundary for \(A_{\infty}(B_{l_1} : l_1) \).
In Section 3, we characterize the numerical peak points for \(A_\infty(B_{C(K)} : C(K)) \) when \(K \) is a compact metrizable space. If \(K \) is an infinite compact Hausdorff topological space, we prove that there are no numerical strong-peak points for \(A_\infty(B_{C(K)} : C(K)) \).

2. Numerical peak points and numerical Šilov boundary for holomorphic functions on \(l_1 \)

Lemma 2.1. If \((x, x^*) \in \Pi(l_1)\) is a numerical peak point for \(A_\infty(B_{l_1} : l_1) \), then \(|x^*(e_n)| = 1 \) for all \(n \in \mathbb{N} \).

Proof. Let \(x := (v_n)_n \in S_{l_1}, x^* := (w_n)_n \in S_{l_\infty} \). Assume that there exists a positive integer \(n_0 \) such that \(|w_{n_0}| < 1 \). Since the subset of peak points in \(S_E \) for \(A_\infty(B_{l_1}) \) is invariant under surjective linear isometries on \(l_1 \), we may assume that \(n_0 = 1 \), so \(|w_1| < 1 \). Let \(h \in A_\infty(B_{l_1} : l_1) \) peak numerically at \((x, x^*)\) with \(h := (h_n)_n \) for some \(h_n \in A_\infty(B_{l_1}) \). Let \(x^*_1 := \lambda v_1 + \sum_{n \geq 1} w_nh_n \) for \(|\lambda| \leq 1 \). We claim that \(v_1 \neq 0 \). If \(v_1 = 0 \), then \((x, x^*_1) \in \Pi(l_1)\) for \(|\lambda| \leq 1 \). We define the polynomial \(\psi : \overline{D}(0, 1) \to \mathbb{C} \) by

\[
\psi(\lambda) := \lambda h_1(x) + \sum_{n > 1} w_nh_n(x) \quad (|\lambda| \leq 1).
\]

Since \(\max_{|\lambda| \leq 1} |\psi(\lambda)| = v(h) = |x^*(h(x))| = |\psi(w_1)| \), by the Maximum Modulus Theorem, \(\psi(\lambda) = v(h) \) for all \(|\lambda| \leq 1 \). Choose any complex number \(\beta \) with \(|\beta| = 1 \). Then \((x, x^*_\beta) \neq (x, x^*) \in \Pi(l_1) \) and \(|\psi(\beta)| = |x^*_\beta(h(x))| = v(h) \). Since \(h \) peaks numerically at \((x, x^*)\), we have a contradiction. Thus \(v_1 \neq 0 \). We define the 1-degree polynomial \(u : \overline{D}(0, 1) \to \mathbb{C} \) by

\[
u(\lambda) := \lambda v_1 + \sum_{n > 1} w_nv_n \quad (|\lambda| \leq 1).
\]

Since \(1 = x^*(x) = |u(w_1)| \), by the Maximum Modulus Theorem, \(u(\lambda) = 1 \) for all \(|\lambda| \leq 1 \). By the same reason as in the above argument, \((x, x^*_\beta) \in \Pi(l_1) \) and \(|\psi(\beta)| = |x^*_\beta(h(x))| = v(h) \) for any \(\beta \in \mathbb{C} \) with \(|\beta| = 1 \). Thus we have a contradiction. Therefore \(|w_1| = 1 \). \(\square \)

Theorem 2.2. \(S := \{(x, x^*) \in \Pi(l_1) : |x^*(e_n)| = 1 \text{ for all } n \in \mathbb{N}\} \) is the set of all numerical strong-peak points for the space of 2-degree polynomials in \(A_\infty(B_{l_1} : l_1) \) and every numerical peak point for the space of 2-degree polynomials in \(A_\infty(B_{l_1} : l_1) \) is a numerical strong-peak point.

Proof. By Lemma 2.1, it is enough to show the first statement of the theorem. Let \((y_0, y_0^*) \in S \). We will prove that \((y_0, y_0^*) \) is a numerical strong-peak point for the space of 2-degree polynomials in \(A_\infty(B_{l_1} : l_1) \). Let \(J = \text{supp}(y_0) \). The subset of peak points in \(S_E \) for \(A_\infty(B_{l_1}) \) is invariant under surjective linear isometries on \(l_1 \), so we can assume that \(y_0(k) > 0 \) for all \(k \in J \). Let \(a_n := y_0^*(e_n) \) for all \(n \in \mathbb{N} \). Then \(a_k = 1 \) for all \(k \in J \). By Theorem 2.6 in [4] there exists a 2-degree polynomial \(f \in A_\infty(B_{l_1}) \) which peaks strongly at \(y_0 \) with \(\|f\| = 1 \). Let \(\lambda_n := \text{sgn}(a_n) \) and \(z_0 := \sum_{n=1}^\infty \lambda_n b_ne_n \in S_{l_1} \) with \(b_n > 0 \) for all \(n \in \mathbb{N} \). We define a 2-degree polynomial \(h \in A_\infty(B_{l_1} : l_1) \) by \(h(x) := f(x)z_0 \). Clearly \(y_0^*(h(y_0)) = 1 = \|h\| = v(h) \). We claim that \(h \) peaks strongly at \((y_0, y_0^*) \).

Consider a sequence \(\{(x_n, x_n^*)\} \in \Pi(l_1) \) such that \(\lim_{n \to \infty} |x_n^*(h(x_n))| = v(h) \). We
will prove that \(x_n \to y_0 \) in norm and \(x^*_n \to y^*_0 \) in \(w^* \)-topology. Since
\[
1 = \lim_{n \to \infty} |x^*_n(h(x_n))| \leq \lim_{n \to \infty} |f(x_n)| \leq 1
\]
and \(f \) peaks strongly at \(y_0 \), \(x_n \to y_0 \) in norm. Write \(x^*_n := (a^{(n)}_j)_j \in S_{l^*} \) and \(x_n := (c^{(n)}_j)_j \in S_l \) for all \(n, j \in \mathbb{N} \). Let \(x := (d_j) \in l_1 \). First we claim that \(\lim_{n \to \infty} a^{(n)}_k = 1 \) for all \(k \in J \). Let \(i_0 \in J \) be fixed. Let \(\{a^{(n)}_{i_0}\} \) be any subsequence of \(\{a^{(n)}_{i_0}\} \). As the set \(\{a^{(n)}_{i_0}\} \) is a bounded subset of \(\mathbb{C} \), there exist a subsequence \(\{a^{(n_{i_0})}_{i_0}\} \) and a complex number \(r \) with \(|r| \leq 1 \) such that \(\lim_{n \to \infty} a^{(n_{i_0})}_{i_0} = r \). Since \(1 = x^*_n(x_n) \) for all \(n \in \mathbb{N} \), we have
\[
1 = \sum_{j=1}^{\infty} a^{(n_{i_0})}_{i_0} c^{(n_{i_0})}_j \quad \text{for all } l \in \mathbb{N}.
\]
Since \(x_n \to y_0 \) in norm, we have \(\lim_{n \to \infty} c^{(n_{i_0})}_{i_0} = y_0(i_0) > 0 \). For a sufficiently large \(l \), \(c^{(n_{i_0})}_{i_0} > 0 \). It follows that, for a sufficiently large \(l \),
\[
1 = \left| a^{(n_{i_0})}_{i_0} \right| c^{(n_{i_0})}_{i_0} + \sum_{j \neq i_0} a^{(n_{i_0})}_j c^{(n_{i_0})}_j \\
\leq \left| a^{(n_{i_0})}_{i_0} \right| c^{(n_{i_0})}_{i_0} + \sum_{j \neq i_0} |a^{(n_{i_0})}_j| |c^{(n_{i_0})}_j| \\
\leq \sum_{j=1}^{\infty} |c^{(n_{i_0})}_j| = 1.
\]
Thus \(1 = a^{(n_{i_0})}_{i_0} = |a^{(n_{i_0})}_j| \) for a sufficiently large \(l \), so \(r = 1 \). Therefore \(\lim_{n \to \infty} a^{(n)}_{i_0} = 1 \). We claim that \(\lim_{n \to \infty} a^{(n)}_j = a_j \) for all \(j \in \mathbb{N} \setminus J \). Let \(j_0 \in \mathbb{N} \setminus J \) be fixed. Let \(\{a^{(n_{j_0})}_{j_0}\} \) be any subsequence of \(\{a^{(n)}_{j_0}\} \). As the set \(\{a^{(n_{j_0})}_{j_0}\} \) is a bounded subset of \(\mathbb{C} \), there exist a subsequence \(\{a^{(n_{j_0})}_{j_0}\} \) and a complex number \(\rho \) with \(|\rho| \leq 1 \) such that \(\lim_{n \to \infty} a^{(n_{j_0})}_{j_0} = \rho \). Since
\[
1 = \lim_{n \to \infty} |x^*_n(h(x_n))| \leq \lim_{n \to \infty} |f(x_n)| |x^*_n(z_0)| \leq 1,
\]
we have
\[
1 = \lim_{n \to \infty} |x^*_n(z_0)| = \lim_{n \to \infty} \left| \sum_{j=1}^{\infty} a^{(n)}_j \lambda_j b_j \right|.
\]
It follows that for fixed \(i_0 \in J \),
\[
1 = \lim_{l \to \infty} \left| \sum_{j=1}^{\infty} a^{(n_{i_0})}_j \lambda_j b_j \right| \\
\leq \lim_{l \to \infty} \left| a^{(n_{j_0})}_{j_0} \lambda_j b_{j_0} + a^{(n_{i_0})}_{i_0} b_{i_0} \right| + \sum_{j \in \mathbb{N} \setminus \{i_0, j_0\}}^{\infty} b_j \\
\leq b_{j_0} + b_{i_0} + \sum_{j \in \mathbb{N} \setminus \{i_0, j_0\}} b_j = 1.
\]
Thus
\[\lim_{l \to \infty} |a^{(n)}_{j_0} \lambda_{j_0} b_{j_0} + a^{(n)}_{i_0} b_{i_0}| = |\rho \lambda_{j_0} b_{j_0} + b_{i_0}| = b_{j_0} + b_{i_0}, \]
showing \(\rho \lambda_{j_0} = 1 \). We have \(\rho = a_{j_0} \). Therefore \(\lim_{n \to \infty} a^{(n)}_{j_0} = a_{j_0} \). Since the \(w^* \)-

By Theorem 2.3 in [3], \(\Pi(l_p) \) is the numerical \(\hat{\text{Si}}lov \) boundary for \(A_\infty(B_{l_p} : l_p) \) for each \(1 < p < \infty \). The following is an application of Theorem 2.2 to the numerical \(\hat{\text{Si}}lov \) boundary.

Theorem 2.3. \(S := \{(x, x^*) \in \Pi(l_1) : |x^*(e_n)| = 1 \text{ for all } n \in \mathbb{N}\} \) is the numerical \(\hat{\text{Si}}lov \) boundary for \(A_\infty(B_{l_1} : l_1) \).

Proof. It is easy to show that \(S \) is \((\| \| \times w^*) \)-closed. By Theorem 2.2 and the fact that every \((\| \| \times w^*) \)-closed numerical boundary for \(A_\infty(B_{l_1} : l_1) \) contains all numerical strong-peak points, it suffices to prove that \(S \) is a numerical boundary for \(A_\infty(B_{l_1} : l_1) \). Let \(h \in A_\infty(B_{l_1} : l_1) \) and let \(\epsilon > 0 \). Choose \((x_0, x^*_0) \in \Pi(l_1) \) such that \(v(h) - \epsilon < |x^*_0(h(x_0))| \). Let \(x_0 := (v_1)_n, x^*_0 := (w_0)_n \) and \(h := (h_n)_n \) for some \(h_n \in A_\infty(B_{l_1}) \). We claim that there exists a complex sequence \(\{\lambda_n\} \) in the unit disk such that if

\[z^*_n := \sum_{1 \leq j \leq n} \lambda_j e_j + \sum_{j>n} w_j e_j \]

for all \(n \in \mathbb{N} \), then \((x_0, z^*_n) \in \Pi(l_1) \) and \(|z^*_{n+1}(h(x_0))| \geq |z^*_n(h(x_0))| > v(h) - \epsilon \) for all \(n \in \mathbb{N} \). If \(|w_1| = 1 \), let \(\lambda_1 := w_1 \). Otherwise \(w_1 = 0 \); hence

\[(x_0, \lambda_1 e_1 + \sum_{n>1} w_n e_n) \in \Pi(l_1) \text{ for all } |\lambda| \leq 1. \]

If \(h_1(x_0) = 0 \), let \(\lambda_1 := 1 \). Assume that \(h_1(x_0) \neq 0 \). We define a nonconstant 1-degree polynomial \(\psi_1 : \mathcal{D}(0,1) \to \mathbb{C} \) by

\[\psi_1(\lambda) := \lambda h_1(x_0) + \sum_{n>1} w_n h_n(x_0) (|\lambda| \leq 1). \]

Since \(\max_{|\lambda|=1} |\psi_1(\lambda)| \geq |\psi_1(w_1)| = |x^*_0(h(x_0))| \), by the Maximum Modulus Theorem, there exists a complex number \(\lambda_1 \) with \(|\lambda_1| = 1 \) such that

\[|\psi_1(\lambda_1)| \geq |x^*_0(h(x_0))| > v(h) - \epsilon. \]

Let \(z^*_1 := \lambda_1 e_1 + \sum_{n>1} w_n e_n \). Then \((x_0, z^*_1) \in \Pi(l_1) \) and \(|z^*_1(h(x_0))| \geq |x^*_0(h(x_0))| > v(h) - \epsilon \). If \(|w_2| = 1 \), let \(\lambda_2 := w_2 \). Otherwise \(w_2 = 0 \); hence

\[(x_0, \lambda_1 e_1 + \lambda_2 e_2 + \sum_{n>2} w_n e_n) \in \Pi(l_1) \text{ for all } |\lambda| \leq 1. \]

If \(h_2(x_0) = 0 \), let \(\lambda_2 := 1 \). Assume that \(h_2(x_0) \neq 0 \). We define a nonconstant 1-degree polynomial \(\psi_2 : \mathcal{D}(0,1) \to \mathbb{C} \) by

\[\psi_2(\lambda) := \lambda_1 h_1(x_0) + \lambda h_2(x_0) + \sum_{n>2} w_n h_n(x_0) (|\lambda| \leq 1). \]

Since \(\max_{|\lambda|=1} |\psi_2(\lambda)| \geq |\psi_2(w_2)| = |\psi_1(\lambda_1)| > v(h_0) - \epsilon \), by the Maximum Modulus Theorem, there exists a complex number \(\lambda_2 \) with \(|\lambda_2| = 1 \) such that

\[|\psi_2(\lambda_2)| \geq |\psi_1(\lambda_1)| > v(h) - \epsilon. \]

Let \(z^*_2 := \sum_{1\leq j \leq 2} \lambda_j e_j + \sum_{n>2} w_n e_n \). Then \((x_0, z^*_2) \in \Pi(l_1) \) and \(|z^*_2(h(x_0))| \geq |z^*_1(h(x_0))| > v(h) - \epsilon \). Continuing this process, we can get a complex sequence
\{\lambda_n\} in the unit disk satisfying the claim. Let \(z^* := (\lambda_n)_{n=1}^\infty \in l_\infty \). We will show that \((x_0, z^*) \in S\). Indeed, it follows that for each \(n \in \mathbb{N}\),

\[
|z^*(x_0) - 1| = |z^*(x_0) - z^*_n(x_0)| \leq \sum_{j>n} |\lambda_j - w_j| |v_j| \leq 2 \sum_{j>n} |v_j| \to 0,
\]
as \(n \to \infty\). Thus \(z^*(x_0) = 1\). We will show that

\[
\lim_{n \to \infty} |z^*_n(h(x_0))| = |z^*(h(x_0))|.
\]

Let \(h(x_0) := (\beta_n)_{n=1}^\infty \in l_1\). It follows that

\[
|z^*(h(x_0)) - z^*_n(h(x_0))| \leq \sum_{j>n} |\lambda_j - w_j| |\beta_j| \leq 2 \sum_{j>n} |\beta_j| \to 0,
\]
as \(n \to \infty\). Thus we have

\[
v(h) - \epsilon < \limsup_{n \to \infty} |z^*_n(h(x_0))| = |z^*(h(x_0))| \leq \sup_{(x,x^*) \in S} |x^*(h(x))| \leq v(h),
\]
which shows that \(\sup_{(x,x^*) \in S} |x^*(h(x))| = v(h)\). Since \(h \in A_\infty(B_{l_1}: l_1)\) is arbitrary, we complete the proof. \(\square\)

3. Numerical peak points and numerical strong-peak points on \(C(K)\)

Theorem 3.1. Let \(K\) be a compact Hausdorff topological space with at least two points. If \((x_0, x^*_0) \in \Pi(C(K))\) is a numerical peak point for \(A_\infty(B_{C(K)}: C(K))\), then:

(a) There exists a unique \(t_0 \in K\) such that

\[
|x_0(t)| = 1, \ \forall t \in K \text{ and } x^*_0 = \text{sign}(x_0(t_0))\delta_{t_0}.
\]

Hence \(x_0\) is an extreme point of \(B_{C(K)}\).

(b) \(x_0\) is a peak point for \(A_\infty(B_{C(K)})\).

Proof. Let \(h \in S_{A_\infty(B_{C(K)}: C(K))}\) peak numerically at \((x_0, x^*_0)\). Then \(v(h) = |x^*_0(h(x_0))|\). By Theorem 2.7 in [2], \(1 = v(h) = \|h\|\). Choose an element \(t_0 \in K\) such that \(1 = \|h(x_0)\| = \|\delta_{t_0} \circ h(x_0)\| = \|\delta_{t_0} \circ h\|\). We claim that \(|x_0(t)| = 1, \ \forall t \in K\).

For every complex number \(\lambda\) in the unit disk, the function \(x_0 + \lambda(1 - |x_0|) \in C(K)\), and for every \(t \in K\), it is satisfied that \(|x_0(t) + \lambda(1 - |x_0(t)|)| \leq 1\). Define the continuous function \(\phi : \overline{D}(0,1) \to \mathbb{C}\) by

\[
\phi(\lambda) := \delta_{t_0}(h(x_0 + \lambda(1 - |x_0|))) \ (|\lambda| \leq 1).
\]

Note that \(\phi\) is holomorphic on \(D(0,1)\) and \(|\phi(\lambda)| \leq 1\) for every \(\lambda\) in the unit disk. Also \(|\phi(0)| = |\delta_{t_0} \circ h(x_0)| = 1\). Since \(\phi\) attains its maximum modulus at 0, \(\phi\) is constant. We choose a complex number \(\lambda_0\) satisfying the facts that \(|\lambda_0| = 1\) and \(|x_0(t_0) + \lambda_0(1 - |x_0(t_0)|)| = 1\). So \(\phi(\lambda) = \phi(\lambda_0)\). The element \(z_0 := x_0 + \lambda_0(1 - |x_0|)\) is in the unit ball of \(C(K)\) and \(|z_0(t_0)| = 1\). Then \((z_0, z^*_0) \in \Pi(C(K))\). Since \(|\phi(\lambda_0)| = |\delta_{t_0}(h(x_0)| = v(h) = 1\), we have \(z_0 = x_0\) and \(x^*_0 = x^*_0 \delta_{t_0}\). Thus \(\lambda_0(1 - |x_0(t)|) = 0\) for all \(t \in K\), so \(|x_0(t)| = 1\) for all \(t \in K\). So \(x^*_0 = \text{sign}(x_0(t_0))\delta_{t_0}\).

The uniqueness of \(t_0\) follows from Urysohn’s Lemma. Therefore we have proved assertion (a).
We will show that \(\delta_{t_0} \circ h \) peaks at \(x_0 \). Let \(y \in S_{C(K)} \) such that \(1 = |\delta_{t_0} \circ h(y)| = \|\delta_{t_0} \circ h\|. \) By the same argument as in the proof of assertion (a), we have \(|y(t_0)| = 1 \). Note that \((y, sign(y(t_0))\delta_{t_0}) \in \Pi(C(K))\). Since
\[
1 = |sign(y(t_0))\delta_{t_0}(h(y))| = \|\delta_{t_0} \circ h\| = \|h\| = v(h),
\]
we have \(y = x_0 \) and \(x_0^* = sign(y(t_0))\delta_{t_0} \), which show assertion (b). \(\square \)

Theorem 3.2. (1) Let \(K \) be a compact metrizable space.

Then \(M := \{(x, sign(x(t))\delta_t) : x \in extB_{C(K)}, t \in K \} \) is the set of all numerical peak points for the space of 1-degree polynomials in \(A_{\infty}(B_{C(K)} : C(K)) \).

(2) If \(K \) is any infinite compact topological space, then there are no numerical strong-peak points for \(A_{\infty}(B_{C(K)} : C(K)) \).

Proof. (1): By (a) of Theorem 3.1, it suffices to show that if \((x_0, sign(x(t_0))\delta_{t_0}) \in M\), then it is a numerical peak point for the space of 1-degree polynomials in \(A_{\infty}(B_{C(K)} : C(K)) \). Since the subset of peak points in \(S_{C(K)} \) for \(A_{\infty}(B_{C(K)} : C(K)) \) is invariant under surjective linear isometries on \(C(K) \), we can assume that \(x_0(t) = 1 \) for all \(t \in K \). Since \(K \) is a metrizable space, there exists a dense subset \(\{t_n\} \) in \(K \).

Choose \((\alpha_n) \in S_1\) with \(\alpha_n > 0 \) for all \(n \in \mathbb{N} \). We claim that there exists a function \(y_0 \in S_{C(K)} \) such that \(y_0(t_0) = 1 \) and \(0 \leq y_0(t) < 1 \) for all \(t \in K \setminus \{t_0\} \). Indeed, let \(d \) be a metric in \(K \). Let
\[
A_n := \{t \in K : d(t, t_0) \geq \frac{1}{n} \} \quad (n \in \mathbb{N}).
\]

Clearly \(A_n \) is a closed subset of \(K \) with \(t_0 \notin A_n \) for all \(n \in \mathbb{N} \). By the Tietze Extension Theorem, for each \(n \in \mathbb{N} \), there exists a sequence \(\{z_n\} \) in \(C(K) \) such that \(0 \leq z_n \leq 1 \), \(z_n(t_0) = 1 \) and \(z_n(A_n) = \{0\} \). We define the function
\[
y_0(t) := \sum_{n=1}^{\infty} \frac{1}{2^n} z_n(t) \quad (t \in K).
\]

We define a 1-degree polynomial \(h \in A_{\infty}(B_{C(K)} : C(K)) \) by
\[
h(x) := \sum_{n=1}^{\infty} \alpha_n(1 + x(t_n))y_0 \quad (x \in C(K)).
\]

We claim that \(h \) peaks numerically at \((x_0, \delta_{t_0})\). Let \((z_0, z_0^*) \in \Pi(C(K))\) be such that \(v(h) = |z_0^*(h(z_0))| \). Since \(2 \geq \|h\| \geq v(h) \geq \delta_{t_0}(h(x_0)) = 2 \), we have \(2 = v(h) = \|h\| \).

Since \(2 = |z_0^*(h(z_0))| = \|h(z_0)\| \), we have \(z_0(t_n) = 1 \) for all \(n \in \mathbb{N} \). Since \(\{t_n\} \) is a dense subset of \(K \), \(z_0(t) = 1 = x_0(t) \) for all \(t \in K \). Thus \(z_0 = x_0 \). By the Riesz Representation Theorem on \(C(K)^* \), there exists a unique regular complex Baire measure \(\mu = v + iw \) on \(K \) (\(v \) and \(w \) are positive measures) satisfying
\[
z_0^*(x) = \int_K x(t) \, d\mu = \int_K x(t) \, dv + i \int_K x(t) \, dw \quad (x \in C(K))
\]
with \(\|z_0^*\| = |\mu| = 1 \). Since
\[
1 = z_0^*(x_0) = \int_K x_0 \, dv + i \int_K x_0 \, dw = v(K) + iw(K),
\]

\(v(K) = 1 \), \(w(K) = 0 \). Thus \(w = 0 \) and
\[
z_0^*(x) = \int_K x(t) \, dv \quad (x \in C(K)).
\]
It follows that
\[2 = |z_0^*(h(x_0))| = | \int_K h(x_0) dv | = 2 | \int_K y_0(t) dv | \leq 2 | \int_K |y_0(t)| dv | \leq 2. \]
Thus \(1 = \int_K |y_0(t)| dv \). We claim that \(v(\{t_0\}) = 1 \). Otherwise, by the regularity of \(v \) and the choice of \(y_0 \), there exists an open subset \(\theta_0 \) of \(K \) containing \(t_0 \) such that \(v(K \setminus \theta_0) > 0 \). Let \(\delta_0 := \max_{t \in K \setminus \theta_0} | y_0(t) | < 1 \). It follows that
\[1 = \int_K |y_0(t)| dv \leq v(\theta_0) + \delta_0 \ v(K \setminus \theta_0) < v(K) = 1, \]
which is impossible. Thus \(v(\{t_0\}) = 1 \) and \(v(K \setminus \{t_0\}) = 0 \). Therefore, we have
\[z_0^*(x) = \int_K x(t) \ dv = x(t_0) \ v(\{t_0\}) = x(t_0) = \delta_0(x) \]
for all \(x \in C(K) \), showing \(z_0^* = \delta_0 \).

(2): By (a) of Theorem 3.1, it suffices to show that if \((x_0, x_0^*) \in \Pi(C(K)) \) with \(x_0 \in \text{ext}B_{C(K)} \), then \((x_0, x_0^*) \) is not a numerical strong-peak point. Let \(\{t_n\} \) in \(K \) be the sequence such that there is a sequence \(\{x_n\} \) in \(B_{C(K)} \) such that \(0 \leq x_n \leq 1, x_n(t_n) = 1, \forall n \) and \(\text{supp}(x_n) \cap \text{supp}(x_m) = \emptyset \) \((n \neq m) \). Let \(h \in A_\infty(B_{C(K)} : C(K)) \) such that \(1 = v(h) = |x_0^*(h(x_0))| \). We will show that \(h \) cannot peak strongly at \((x_0, x_0^*) \). By Theorem 2.7 in \(\text{[2]} \), we have \(v(h) = \| h \| = 1 \). There exists a \(t_0 \in K \) such that \(\text{sign}(x_0(t_0)) \delta_{t_0} \circ h \in A_\infty(B_{C(K)}) \) and
\[1 = \| h(x_0) \| = | \delta_{t_0}(x_0) | = | \text{sign}(x_0(t_0)) \delta_{t_0}(h(x_0)) | = \| \delta_{t_0} \circ h \|. \]
Let \(z_n := x_0(1 - x_n) \) for all \(n \in \mathbb{N} \). Since the support of \(x_n \) are pairwise disjoint, there is a positive integer \(N \) such that \(x_n(t_0) = 0 \) for all \(n > N \). Let \(\lambda_n := \text{sign}(z_n(t_0)) \) for all \(n > N \). Thus \(\{z_n, \lambda_n, \delta_{t_0}\} \) in \(\Pi(C(K)) \) for all \(n > N \). Since \(\{x_n\} \) is equivalent to a \(c_0 \)-basis, then it converges weakly to 0. By the Rainwater theorem, the sequence \(\{z_n\} \) is in the unit ball of \(C(K) \) and converges weakly to \(x_0 \). Since \(C(K) \) has the Dunford-Pettis property, then it has also the polynomial Dunford-Pettis property \(\text{[10]} \), and so, if we follow the argument in the proof Proposition 4.1 in \(\text{[4]} \), then
\[|\lambda_n \delta_{t_0} \circ h(z_n)| \to 1. \]
It follows that
\[\| z_n - x_0 \| = \| x_0 x_n \| \geq |x_0(t_n)x_n(t_n)| = 1 \]
for all \(n \in \mathbb{N} \). Therefore, we have proved that \((x_0, x_0^*) \) is not a numerical strong-peak point.

It is known in \(\text{[3]} \), Theorem 5.2, that there is no numerical Šilov boundary for \(A_\infty(B_{C(K)} : C(K)) \) if \(K \) is an infinite compact Hausdorff topological space.

Corollary 3.3. Let \(n \in \mathbb{N} \). Then \(M := \{(x, \text{sign}(x(t)) \delta_{t}) \in \Pi(l_\infty^n) : |x(k)| = 1 \text{ for all } k = 1, 2, \ldots, n, \text{ for some } t = 1, 2, \ldots, n \} \) is the numerical Šilov boundary for \(A_\infty(B_{l_\infty^n} : l_\infty^n) \).

Proof. (\(\subseteq \)): By Proposition 5.1 in \(\text{[3]} \), it follows.

(\(\supseteq \)): Clearly \(M \) is \((\| \| \times w^*) \)-closed. By Theorem 3.2 (1), \(M \) is the set of all numerical peak points for \(A_\infty(B_{l_\infty^n} : l_\infty^n) \). Since \(l_\infty^n \) is finite dimensional, \(M \) is the set of all numerical strong-peak points.
References

Department of Mathematics, Kyungpook National University, Daegu 702-701, South Korea
E-mail address: sgk317@knu.ac.kr