A rigidity theorem for holomorphic generators on the Hilbert ball
HTML articles powered by AMS MathViewer
- by Mark Elin, Marina Levenshtein, Simeon Reich and David Shoikhet
- Proc. Amer. Math. Soc. 136 (2008), 4313-4320
- DOI: https://doi.org/10.1090/S0002-9939-08-09417-3
- Published electronically: June 25, 2008
- PDF | Request permission
Abstract:
We present a rigidity property of holomorphic generators on the open unit ball $\mathbb {B}$ of a Hilbert space $H$. Namely, if $f\in \operatorname {Hol}(\mathbb {B},H)$ is the generator of a one-parameter continuous semigroup $\left \{F_t\right \}_{t\geq 0}$ on $\mathbb {B}$ such that for some boundary point $\tau \in \partial \mathbb {B}$, the admissible limit $K$-$\lim \limits _{z\rightarrow \tau }\frac {f(x)}{\|x-\tau \|^{3}}=0$, then $f$ vanishes identically on $\mathbb {B}$.References
- Dov Aharonov, Simeon Reich, and David Shoikhet, Flow invariance conditions for holomorphic mappings in Banach spaces, Math. Proc. R. Ir. Acad. 99A (1999), no. 1, 93–104. MR 1883068
- H. Alexander, Holomorphic mappings from the ball and polydisc, Math. Ann. 209 (1974), 249–256. MR 352531, DOI 10.1007/BF01351851
- Luca Baracco, Dmitri Zaitsev, and Giuseppe Zampieri, A Burns-Krantz type theorem for domains with corners, Math. Ann. 336 (2006), no. 3, 491–504. MR 2249756, DOI 10.1007/s00208-005-0727-2
- Earl Berkson and Horacio Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), no. 1, 101–115. MR 480965
- Filippo Bracci, Roberto Tauraso, and Fabio Vlacci, Identity principles for commuting holomorphic self-maps of the unit disc, J. Math. Anal. Appl. 270 (2002), no. 2, 451–473. MR 1916591, DOI 10.1016/S0022-247X(02)00080-X
- Daniel M. Burns and Steven G. Krantz, Rigidity of holomorphic mappings and a new Schwarz lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661–676. MR 1242454, DOI 10.1090/S0894-0347-1994-1242454-2
- M. Elin, M. Levenshtein, S. Reich, and D. Shoikhet, Rigidity results for holomorphic mappings on the unit disk, in Complex and Harmonic Analysis, DEStech Publications, Lancaster, PA, 2007, 93–109.
- Mark Elin, Marina Levenshtein, David Shoikhet, and Roberto Tauraso, Rigidity of holomorphic generators and one-parameter semigroups, Dynam. Systems Appl. 16 (2007), no. 2, 251–266. MR 2330793
- Mark Elin, Simeon Reich, and David Shoikhet, Complex dynamical systems and the geometry of domains in Banach spaces, Dissertationes Math. (Rozprawy Mat.) 427 (2004), 62. MR 2071666, DOI 10.4064/dm427-0-1
- Mark Elin and David Shoikhet, Dynamic extension of the Julia-Wolff-Carathéodory theorem, Dynam. Systems Appl. 10 (2001), no. 3, 421–437. MR 1858192
- Graziano Gentili and Serena Migliorini, A boundary rigidity problem for holomorphic mappings, Proceedings of the Third International Workshop on Differential Geometry and its Applications and the First German-Romanian Seminar on Geometry (Sibiu, 1997), 1997, pp. 161–174. MR 1723606
- Kazimierz Goebel and Simeon Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83, Marcel Dekker, Inc., New York, 1984. MR 744194
- Lawrence A. Harris, The numerical range of holomorphic functions in Banach spaces, Amer. J. Math. 93 (1971), 1005–1019. MR 301505, DOI 10.2307/2373743
- Lawrence A. Harris, Simeon Reich, and David Shoikhet, Dissipative holomorphic functions, Bloch radii, and the Schwarz lemma, J. Anal. Math. 82 (2000), 221–232. MR 1799664, DOI 10.1007/BF02791228
- Xiao Jun Huang, A boundary rigidity problem for holomorphic mappings on some weakly pseudoconvex domains, Canad. J. Math. 47 (1995), no. 2, 405–420. MR 1335086, DOI 10.4153/CJM-1995-022-3
- Eva Kopecká and Simeon Reich, Hyperbolic monotonicity in the Hilbert ball, Fixed Point Theory Appl. (2006), Art. ID 78104, 15. MR 2210916
- Marina Levenshtein, Simeon Reich, and David Shoikhet, An application of the resolvent method to rigidity theory for holomorphic mappings, J. Nonlinear Convex Anal. 8 (2007), no. 1, 99–103. MR 2314669
- Simeon Reich and David Shoikhet, Semigroups and generators on convex domains with the hyperbolic metric, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 8 (1997), no. 4, 231–250 (English, with English and Italian summaries). MR 1631605
- Simeon Reich and David Shoikhet, Nonlinear semigroups, fixed points, and geometry of domains in Banach spaces, Imperial College Press, London, 2005. MR 2022955, DOI 10.1142/9781860947148
- Walter Rudin, Function theory in the unit ball of $\textbf {C}^{n}$, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 241, Springer-Verlag, New York-Berlin, 1980. MR 601594
- David Shoikhet, Semigroups in geometrical function theory, Kluwer Academic Publishers, Dordrecht, 2001. MR 1849612, DOI 10.1007/978-94-015-9632-9
- Roberto Tauraso and Fabio Vlacci, Rigidity at the boundary for holomorphic self-maps of the unit disk, Complex Variables Theory Appl. 45 (2001), no. 2, 151–165. MR 1909431, DOI 10.1080/17476930108815374
Bibliographic Information
- Mark Elin
- Affiliation: Department of Mathematics, ORT Braude College, P.O. Box 78, 21982 Karmiel, Israel
- Email: mark.elin@gmail.com
- Marina Levenshtein
- Affiliation: Department of Mathematics, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
- Email: marlev@list.ru
- Simeon Reich
- Affiliation: Department of Mathematics, The Technion — Israel Institute of Technology, 32000 Haifa, Israel
- MR Author ID: 189912
- Email: sreich@tx.technion.ac.il
- David Shoikhet
- Affiliation: Department of Mathematics, ORT Braude College, P.O. Box 78, 21982 Karmiel, Israel
- Email: davs27@netvision.net.il
- Received by editor(s): July 30, 2007
- Received by editor(s) in revised form: October 20, 2007
- Published electronically: June 25, 2008
- Additional Notes: The third author was partially supported by the Fund for the Promotion of Research at the Technion and by the Technion President’s Research Fund.
All the authors thank the referee for several helpful comments and suggestions. - Communicated by: N. Tomczak-Jaegermann
- © Copyright 2008 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 136 (2008), 4313-4320
- MSC (2000): Primary 30C45, 30D05, 46T25, 47H20
- DOI: https://doi.org/10.1090/S0002-9939-08-09417-3
- MathSciNet review: 2431045