Dahlberg’s bilinear estimate for solutions of divergence form complex elliptic equations
HTML articles powered by AMS MathViewer
- by Steve Hofmann
- Proc. Amer. Math. Soc. 136 (2008), 4223-4233
- DOI: https://doi.org/10.1090/S0002-9939-08-09500-2
- Published electronically: July 25, 2008
- PDF | Request permission
Abstract:
We consider divergence form elliptic operators $L=-\operatorname {div} A(x)\nabla$, defined in $\mathbb {R}^{n+1}=\{(x,t)\in \mathbb {R}^{n}\times \mathbb {R}\}, n \geq 2$, where the $L^{\infty }$ coefficient matrix $A$ is $(n+1)\times (n+1)$, uniformly elliptic, complex and $t$-independent. Using recently obtained results concerning the boundedness and invertibility of layer potentials associated to such operators, we show that if $Lu=0$ in $\mathbb {R}^{n+1}_+$, then for any vector-valued $\textbf {v} \in W^{1,2}_{loc},$ we have the bilinear estimate \[ \left |\iint _{\mathbb {R}^{n+1}_+} \nabla u \cdot \overline {\textbf {v}} dx dt \right |\leq C\sup _{t>0} \|u(\cdot ,t)\|_{L^2(\mathbb {R}^n)}\left ( \||t \nabla \textbf {v}\|| + \|N_*\textbf {v}\|_{L^2(\mathbb {R}^n)}\right ),\] where $\||F\|| \equiv \left (\iint _{\mathbb {R}^{n+1}_+} |F(x,t)|^2 t^{-1} dx dt\right )^{1/2},$ and where $N_*$ is the usual non-tangential maximal operator. The result is new even in the case of real symmetric coefficients and generalizes an analogous result of Dahlberg for harmonic functions on Lipschitz graph domains. We also identify the domain of the generator of the Poisson semigroup for the equation $Lu=0$ in $\mathbb {R}^{n+1}_+.$References
- M. Alfonseca, P. Auscher, A. Axelsson, S. Hofmann and S. Kim, Analyticity of layer potentials and $L^{2}$ solvability of boundary value problems for divergence form elliptic equations with complex $L^{\infty }$ coefficients, preprint http://www.math.missouri.edu/$_{\widetilde {}}$ hofmann/.
- Pascal Auscher, Regularity theorems and heat kernel for elliptic operators, J. London Math. Soc. (2) 54 (1996), no. 2, 284–296. MR 1405056, DOI 10.1112/jlms/54.2.284
- Pascal Auscher, Steve Hofmann, John L. Lewis, and Philippe Tchamitchian, Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators, Acta Math. 187 (2001), no. 2, 161–190. MR 1879847, DOI 10.1007/BF02392615
- Pascal Auscher, Steve Hofmann, John L. Lewis, and Philippe Tchamitchian, Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators, Acta Math. 187 (2001), no. 2, 161–190. MR 1879847, DOI 10.1007/BF02392615
- R. R. Coifman, A. McIntosh, and Y. Meyer, L’intégrale de Cauchy définit un opérateur borné sur $L^{2}$ pour les courbes lipschitziennes, Ann. of Math. (2) 116 (1982), no. 2, 361–387 (French). MR 672839, DOI 10.2307/2007065
- Björn E. J. Dahlberg, Poisson semigroups and singular integrals, Proc. Amer. Math. Soc. 97 (1986), no. 1, 41–48. MR 831384, DOI 10.1090/S0002-9939-1986-0831384-0
- Ennio De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25–43 (Italian). MR 0093649
- C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta Math. 129 (1972), no. 3-4, 137–193. MR 447953, DOI 10.1007/BF02392215
- Steve Hofmann and Seick Kim, The Green function estimates for strongly elliptic systems of second order, Manuscripta Math. 124 (2007), no. 2, 139–172. MR 2341783, DOI 10.1007/s00229-007-0107-1
- Pascal Auscher, Steve Hofmann, John L. Lewis, and Philippe Tchamitchian, Extrapolation of Carleson measures and the analyticity of Kato’s square-root operators, Acta Math. 187 (2001), no. 2, 161–190. MR 1879847, DOI 10.1007/BF02392615
- Steve Hofmann and Alan McIntosh, The solution of the Kato problem in two dimensions, Proceedings of the 6th International Conference on Harmonic Analysis and Partial Differential Equations (El Escorial, 2000), 2002, pp. 143–160. MR 1964818, DOI 10.5565/PUBLMAT_{E}sco02_{0}6
- Carlos E. Kenig, Harmonic analysis techniques for second order elliptic boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 83, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1994. MR 1282720, DOI 10.1090/cbms/083
- Carlos E. Kenig and Jill Pipher, The Dirichlet problem for elliptic equations with drift terms, Publ. Mat. 45 (2001), no. 1, 199–217. MR 1829584, DOI 10.5565/PUBLMAT_{4}5101_{0}9
- Dorina Mitrea, Marius Mitrea, and Michael Taylor, Layer potentials, the Hodge Laplacian, and global boundary problems in nonsmooth Riemannian manifolds, Mem. Amer. Math. Soc. 150 (2001), no. 713, x+120. MR 1809655, DOI 10.1090/memo/0713
- J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931–954. MR 100158, DOI 10.2307/2372841
- Gregory Verchota, Layer potentials and regularity for the Dirichlet problem for Laplace’s equation in Lipschitz domains, J. Funct. Anal. 59 (1984), no. 3, 572–611. MR 769382, DOI 10.1016/0022-1236(84)90066-1
Bibliographic Information
- Steve Hofmann
- Affiliation: Department of Mathematics, University of Missouri, Columbia, Missouri 65211
- MR Author ID: 251819
- ORCID: 0000-0003-1110-6970
- Email: hofmann@math.missouri.edu
- Received by editor(s): April 27, 2007
- Published electronically: July 25, 2008
- Additional Notes: The author was supported by the National Science Foundation
- Communicated by: Michael T. Lacey
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 4223-4233
- MSC (2000): Primary 42B20, 42B25, 35J25
- DOI: https://doi.org/10.1090/S0002-9939-08-09500-2
- MathSciNet review: 2431035