Generic subadditive functions
HTML articles powered by AMS MathViewer
- by N. H. Bingham and A. J. Ostaszewski
- Proc. Amer. Math. Soc. 136 (2008), 4257-4266
- DOI: https://doi.org/10.1090/S0002-9939-08-09504-X
- Published electronically: July 22, 2008
- PDF | Request permission
Abstract:
We prove a generalization of the ‘Subadditive Limit Theorem’ and of the corresponding Berz Theorem in a class of functions that includes both the measurable functions and the ‘Baire functions’. The generic subadditive functions are defined by a combinatorial property previously introduced by the authors for the study of the foundations of regular variation. By specialization we provide the previously unknown Baire variants of the fundamental theorems of subadditive functions, answering an old question posed by Bingham, Goldie, and Teugels in 1987.References
- F. Bernstein and G. Doetsch, Zur Theorie der konvexen Funktionen, Math. Ann. 76 (1915), no. 4, 514–526 (German). MR 1511840, DOI 10.1007/BF01458222
- Edgar Berz, Sublinear functions on $R$, Aequationes Math. 12 (1975), no. 2-3, 200–206. MR 387862, DOI 10.1007/BF01836548
- N. H. Bingham and Charles M. Goldie, Extensions of regular variation. I. Uniformity and quantifiers, Proc. London Math. Soc. (3) 44 (1982), no. 3, 473–496. MR 656246, DOI 10.1112/plms/s3-44.3.473
- N. H. Bingham, C. M. Goldie, and J. L. Teugels, Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge, 1987. MR 898871, DOI 10.1017/CBO9780511721434
- N. H. Bingham and A. J. Ostaszewski, Foundations of Regular Variation, CDAM Research Report Series, LSE-CDAM-2006-22.
- N. H. Bingham and A. J. Ostaszewski, Beyond the Theorems of Steinhaus and Ostrowski: Combinatorial Versions, LSE-CDAM Report, LSE-CDAM-2007-15.
- N. H. Bingham and A. J. Ostaszewski, Beyond Lebesgue and Baire: Generic Regular Variation, LSE-CDAM Report, LSE-CDAM-2007-16.
- N. H. Bingham and A. J. Ostaszewski, Duality and the Kestelman-Borwein-Ditor Theorem, LSE-CDAM Report, LSE-CDAM-2007-29.
- I. Csiszár and P. Erdös, On the function $g(t)=\lim \sup _{x\rightarrow \infty }(f(x+t)-f(x))$, Magyar Tud. Akad. Kut. Int. Közl. A 9 (1964), 603-606.
- D. J. Daley, Upper bounds for the renewal function via Fourier methods, Ann. Probab. 6 (1978), no. 5, 876–884. MR 0494547
- William Feller, An introduction to probability theory and its applications. Vol. II. , 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1971. MR 0270403
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1988. Reprint of the 1952 edition. MR 944909
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- Alexander S. Kechris, Classical descriptive set theory, Graduate Texts in Mathematics, vol. 156, Springer-Verlag, New York, 1995. MR 1321597, DOI 10.1007/978-1-4612-4190-4
- J. F. C. Kingman, Subadditive processes, École d’Été de Probabilités de Saint-Flour, V–1975, Lecture Notes in Math., Vol. 539, Springer, Berlin, 1976, pp. 167–223. MR 0438477
- Marek Kuczma, An introduction to the theory of functional equations and inequalities, Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], vol. 489, Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw, 1985. Cauchy’s equation and Jensen’s inequality; With a Polish summary. MR 788497
- Thomas M. Liggett, Interacting particle systems, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 276, Springer-Verlag, New York, 1985. MR 776231, DOI 10.1007/978-1-4613-8542-4
- Janusz Matkowski and Tadeusz Świątkowski, On subadditive functions, Proc. Amer. Math. Soc. 119 (1993), no. 1, 187–197. MR 1176072, DOI 10.1090/S0002-9939-1993-1176072-2
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- R. A. Rosenbaum, Sub-additive functions, Duke Math. J. 17 (1950), 227–247. MR 36796
Bibliographic Information
- N. H. Bingham
- Affiliation: Department of Mathematics, Imperial College London, South Kensington, London SW7 2AZ, United Kingdom
- Email: n.bingham@ic.ac.uk
- A. J. Ostaszewski
- Affiliation: Department of Mathematics, London School of Economics, Houghton Street, London WC2A 2AE, United Kingdom
- Email: a.j.ostaszewski@lse.ac.uk
- Received by editor(s): June 29, 2007
- Published electronically: July 22, 2008
- Communicated by: Michael T. Lacey
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 4257-4266
- MSC (2000): Primary 39B62
- DOI: https://doi.org/10.1090/S0002-9939-08-09504-X
- MathSciNet review: 2431038