Strongly non-degenerate Lie algebras
HTML articles powered by AMS MathViewer
- by Francesc Perera and Mercedes Siles Molina
- Proc. Amer. Math. Soc. 136 (2008), 4115-4124
- DOI: https://doi.org/10.1090/S0002-9939-08-09558-0
- Published electronically: July 23, 2008
- PDF | Request permission
Abstract:
Let $A$ be a semiprime $2$- and $3$-torsion free non-commutative associative algebra. We show that the Lie algebra $\mathcal {D}\mathrm {er}(A)$ of (associative) derivations of $A$ is strongly non-degenerate, which is a strong form of semiprimeness for Lie algebras, under some additional restrictions on the center of $A$. This result follows from a description of the quadratic annihilator of a general Lie algebra inside appropriate Lie overalgebras. Similar results are obtained for an associative algebra $A$ with involution and the Lie algebra $\mathrm {SDer}(A)$ of involution preserving derivations of $A$.References
- Georgia Benkart, The Lie inner ideal structure of associative rings, J. Algebra 43 (1976), no. 2, 561–584. MR 435149, DOI 10.1016/0021-8693(76)90127-7
- M. Brešar, F. Perera, J. Sánchez Ortega, M. Siles Molina, Computing the maximal algebra of quotients of a Lie algebra, Forum Math., to appear.
- Miguel Cabrera, Ideals which memorize the extended centroid, J. Algebra Appl. 1 (2002), no. 3, 281–288. MR 1932152, DOI 10.1142/S0219498802000185
- M. Cabrera, J. Sánchez Ortega, Lie quotients for skew Lie algebras, to appear in Algebra Colloq.
- Antonio Fernández López, Esther García, and Miguel Gómez Lozano, The Jordan socle and finitary Lie algebras, J. Algebra 280 (2004), no. 2, 635–654. MR 2089256, DOI 10.1016/j.jalgebra.2004.06.013
- I. N. Herstein, Topics in ring theory, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0271135
- I. N. Herstein, On the Lie structure of an associative ring, J. Algebra 14 (1970), 561–571. MR 255610, DOI 10.1016/0021-8693(70)90103-1
- James E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Mathematics, Vol. 9, Springer-Verlag, New York-Berlin, 1972. MR 0323842
- D. A. Jordan, The Lie ring of symmetric derivations of a ring with involution, J. Austral. Math. Soc. Ser. A 29 (1980), no. 2, 153–161. MR 566283
- C. R. Jordan and D. A. Jordan, Lie rings of derivations of associative rings, J. London Math. Soc. (2) 17 (1978), no. 1, 33–41. MR 472927, DOI 10.1112/jlms/s2-17.1.33
- A. I. Kostrikin, Around Burnside, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 20, Springer-Verlag, Berlin, 1990. Translated from the Russian and with a preface by James Wiegold. MR 1075416, DOI 10.1007/978-3-642-74324-5
- Charles Lanski, Lie structure in semi-prime rings with involution, Comm. Algebra 4 (1976), no. 8, 731–746. MR 412226, DOI 10.1080/00927877608822134
- C. Martínez, The ring of fractions of a Jordan algebra, J. Algebra 237 (2001), no. 2, 798–812. MR 1816717, DOI 10.1006/jabr.2000.8617
- F. Perera, M. Siles Molina, Associative and Lie algebras of quotients, Publ. Mat. 52 (2008), 129–149.
- Mercedes Siles Molina, Algebras of quotients of Lie algebras, J. Pure Appl. Algebra 188 (2004), no. 1-3, 175–188. MR 2030813, DOI 10.1016/j.jpaa.2003.10.005
- Oleg N. Smirnov, Finite $\textbf {Z}$-gradings of Lie algebras and symplectic involutions, J. Algebra 218 (1999), no. 1, 246–275. MR 1704686, DOI 10.1006/jabr.1999.7880
- E. Zelmanov, Lie algebras with an algebraic adjoint representation. Math. USSR Sb. 49(2) (1984), 537–552.
Bibliographic Information
- Francesc Perera
- Affiliation: Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- MR Author ID: 620835
- Email: perera@mat.uab.cat
- Mercedes Siles Molina
- Affiliation: Departamento de Álgebra, Geometría y Topología, Universidad de Málaga, 29071 Málaga, Spain
- Email: msilesm@uma.es
- Received by editor(s): April 13, 2007
- Received by editor(s) in revised form: September 26, 2007
- Published electronically: July 23, 2008
- Additional Notes: The first author was partially supported by the DGI MEC-FEDER through Project MTM2005-00934 and by the Comissionat per Universitats i Recerca de la Generalitat de Catalunya.
The second author was partially supported by the MEC and Fondos FEDER jointly through project MTM2004-06580-C02-02 and by the Junta de Andalucía PAI, projects FQM-336 and FQM-1215. - Communicated by: Birge Huisgen-Zimmermann
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 4115-4124
- MSC (2000): Primary 17B60; Secondary 16W25
- DOI: https://doi.org/10.1090/S0002-9939-08-09558-0
- MathSciNet review: 2431022