Improvements of lower bounds for the least common multiple of finite arithmetic progressions
HTML articles powered by AMS MathViewer
- by Shaofang Hong and Yujuan Yang
- Proc. Amer. Math. Soc. 136 (2008), 4111-4114
- DOI: https://doi.org/10.1090/S0002-9939-08-09565-8
- Published electronically: July 17, 2008
- PDF | Request permission
Abstract:
Let $u_0, r, \alpha$ and $n$ be positive integers such that $(u_ 0,r)=1$. Let $u_k=u_0+kr$ for $1\leq k\leq n$. We prove that $L_n :=\textrm {lcm}\{u_0, u_1,\cdots , u_n\}\geq u_ 0r^\alpha (r+1)^n$ if $n>r^\alpha$. This improves the lower bound of $L_n$ obtained previously by Farhi, Hong and Feng.References
- Tom M. Apostol, Introduction to analytic number theory, Undergraduate Texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1976. MR 0434929
- Gennady Bachman and Troy Kessler, On divisibility properties of certain multinomial coefficients. II, J. Number Theory 106 (2004), no. 1, 1–12. MR 2029778, DOI 10.1016/j.jnt.2003.12.001
- Bakir Farhi, Minorations non triviales du plus petit commun multiple de certaines suites finies d’entiers, C. R. Math. Acad. Sci. Paris 341 (2005), no. 8, 469–474 (French, with English and French summaries). MR 2180812, DOI 10.1016/j.crma.2005.09.019
- Bakir Farhi, Nontrivial lower bounds for the least common multiple of some finite sequences of integers, J. Number Theory 125 (2007), no. 2, 393–411. MR 2332595, DOI 10.1016/j.jnt.2006.10.017
- B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Ann. of Math. (2) 167 (2008), 481-548.
- Denis Hanson, On the product of the primes, Canad. Math. Bull. 15 (1972), 33–37. MR 313179, DOI 10.4153/CMB-1972-007-7
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- Shaofang Hong and Weiduan Feng, Lower bounds for the least common multiple of finite arithmetic progressions, C. R. Math. Acad. Sci. Paris 343 (2006), no. 11-12, 695–698 (English, with English and French summaries). MR 2284695, DOI 10.1016/j.crma.2006.11.002
- Shaofang Hong and Raphael Loewy, Asymptotic behavior of eigenvalues of greatest common divisor matrices, Glasg. Math. J. 46 (2004), no. 3, 551–569. MR 2094810, DOI 10.1017/S0017089504001995
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716, DOI 10.1007/978-1-4757-2103-4
- G. Myerson and J. W. Sander, What the least common multiple divides. II, J. Number Theory 61 (1996), no. 1, 67–84. MR 1418320, DOI 10.1006/jnth.1996.0138
- M. Nair, On Chebyshev-type inequalities for primes, Amer. Math. Monthly 89 (1982), no. 2, 126–129. MR 643279, DOI 10.2307/2320934
Bibliographic Information
- Shaofang Hong
- Affiliation: Mathematical College, Sichuan University, Chengdu 610064, People’s Republic of China
- Email: s-f.hong@tom.com, hongsf02@yahoo.com, sfhong@scu.edu.cn
- Yujuan Yang
- Affiliation: Mathematical College, Sichuan University, Chengdu 610064, People’s Republic of China
- Email: y.j.yang@tom.com
- Received by editor(s): September 18, 2007
- Published electronically: July 17, 2008
- Additional Notes: The first author was supported in part by the Program for New Century Excellent Talents in University, Grant No. NCET-06-0785.
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 4111-4114
- MSC (2000): Primary 11A05
- DOI: https://doi.org/10.1090/S0002-9939-08-09565-8
- MathSciNet review: 2431021