Separators of Siegel modular forms of degree two
HTML articles powered by AMS MathViewer
- by Bernhard Heim
- Proc. Amer. Math. Soc. 136 (2008), 4167-4173
- DOI: https://doi.org/10.1090/S0002-9939-08-09597-X
- Published electronically: June 26, 2008
Abstract:
We prove that cuspidal Siegel modular forms of degree two and weight $2k$ are uniquely determined by their Fourier coefficients on small subsets of matrices of content one. This generalizes results of Breulmann, Kohnen, Katsurada, Scharlau and Walling. We give applications to the space of Saito-Kurokawa lifts.References
- A. O. L. Atkin and J. Lehner, Hecke operators on $\Gamma _{0}(m)$, Math. Ann. 185 (1970), 134–160. MR 268123, DOI 10.1007/BF01359701
- Stefan Breulmann and Winfried Kohnen, Twisted Maaß-Koecher series and spinor zeta functions, Nagoya Math. J. 155 (1999), 153–160. MR 1711371, DOI 10.1017/S0027763000007029
- William Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973), 301–314. MR 337789, DOI 10.1007/BF01428197
- B. Heim: On the Spezialschar of Maass. arXiv: 0801.1804v1 [math.NT].
- H. Katsurada, On the coincidence of Hecke-eigenforms, Abh. Math. Sem. Univ. Hamburg 70 (2000), 77–83. MR 1809535, DOI 10.1007/BF02940903
- Ken Ono and Christopher Skinner, Fourier coefficients of half-integral weight modular forms modulo $l$, Ann. of Math. (2) 147 (1998), no. 2, 453–470. MR 1626761, DOI 10.2307/121015
- Cris Poor and David S. Yuen, Linear dependence among Siegel modular forms, Math. Ann. 318 (2000), no. 2, 205–234. MR 1795560, DOI 10.1007/s002080000083
- C. S. Rajan, Refinement of strong multiplicity one for automorphic representations of $\textrm {GL}(n)$, Proc. Amer. Math. Soc. 128 (2000), no. 3, 691–700. MR 1707005, DOI 10.1090/S0002-9939-99-05616-6
- C. S. Rajan, On strong multiplicity one for $l$-adic representations, Internat. Math. Res. Notices 3 (1998), 161–172. MR 1606395, DOI 10.1155/S1073792898000142
- Richard Taylor, $l$-adic representations associated to modular forms over imaginary quadratic fields. II, Invent. Math. 116 (1994), no. 1-3, 619–643. MR 1253207, DOI 10.1007/BF01231575
- Rudolf Scharlau and Lynne H. Walling, A weak multiplicity-one theorem for Siegel modular forms, Pacific J. Math. 211 (2003), no. 2, 369–374. MR 2015741, DOI 10.2140/pjm.2003.211.369
- Goro Shimura, Introduction to the arithmetic theory of automorphic functions, Kanô Memorial Lectures, No. 1, Iwanami Shoten Publishers, Tokyo; Princeton University Press, Princeton, N.J., 1971. MR 0314766
- D. Zagier, Sur la conjecture de Saito-Kurokawa (d’après H. Maass), Seminar on Number Theory, Paris 1979–80, Progr. Math., vol. 12, Birkhäuser, Boston, Mass., 1981, pp. 371–394 (French). MR 633910
Bibliographic Information
- Bernhard Heim
- Affiliation: Max-Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- Email: heim@mpim-bonn.mpg.de
- Received by editor(s): November 8, 2007
- Published electronically: June 26, 2008
- Communicated by: Wen-Ching Winnie Li
- © Copyright 2008 Bernhard Heim
- Journal: Proc. Amer. Math. Soc. 136 (2008), 4167-4173
- MSC (2000): Primary 11Fxx
- DOI: https://doi.org/10.1090/S0002-9939-08-09597-X
- MathSciNet review: 2431029