CESÀRO FUNCTION SPACES
FAIL THE FIXED POINT PROPERTY

SERGEI V. ASTASHKIN AND LECH MALIGRANDA

(Communicated by N. Tomczak-Jaegermann)

Abstract. The Cesàro sequence spaces $ces_p, 1 < p < \infty$, are reflexive but they have the fixed point property. In this paper we prove that in contrast to these sequence spaces the corresponding Cesàro function spaces Ces_p on both $[0, 1]$ and $[0, \infty)$ for $1 < p < \infty$ are not reflexive and they fail to have the fixed point property.

1. Introduction

Let $1 \leq p \leq \infty$. The Cesàro sequence space ces_p is defined as the set of all real sequences $x = \{x_k\}$ such that

$$\|x\|_{c(p)} = \left(\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} |x_k|^p \right) \right)^{1/p} < \infty$$

when $1 \leq p < \infty$,

and

$$\|x\|_{c(\infty)} = \sup_{n \in \mathbb{N}} \frac{1}{n} \sum_{k=1}^{n} |x_k| < \infty$$

when $p = \infty$.

The Cesàro function spaces $Ces_p = Ces_p(I)$ are the classes of Lebesgue measurable real functions f on $I = [0, 1]$ or $I = [0, \infty)$ such that the corresponding norms are finite, where

$$\|f\|_{C(p)} = \left(\int_{I} \left(\frac{1}{x} \int_{0}^{x} |f(t)| \, dt \right)^p \, dx \right)^{1/p} \quad \text{for} \quad 1 \leq p < \infty,$$

and

$$\|f\|_{C(\infty)} = \sup_{x \in I, \, x > 0} \frac{1}{x} \int_{0}^{x} |f(t)| \, dt < \infty \quad \text{for} \quad p = \infty.$$

The Cesàro sequence spaces ces_p were investigated in the seventies by Shiue, Leibowitz and Jagers. In particular, they proved that $ces_1 = \{0\}, ces_p$ are separable reflexive Banach spaces for $1 < p < \infty$ and the l^p spaces are continuously embedded.

Received by the editors October 18, 2007.
2000 Mathematics Subject Classification. Primary 46E30, 46B20, 46B42.

Key words and phrases. Cesàro sequence spaces, Cesàro function spaces, fixed point property, asymptotically isometric copy of l^1, B-convex spaces.

This research was supported by a grant from the Royal Swedish Academy of Sciences for cooperation between Sweden and the former Soviet Union (project 35440). The results were presented by the second author at The 8th International Conference on Fixed Point Theory and Its Applications, 16-22 July 2007, Chiang Mai, Thailand.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication
into ces_p for $1 < p \leq \infty$ with strict embeddings. Also if $1 < p < q \leq \infty$, then $ces_p \subset ces_q$ with continuous strict embeddings. Bennett [3] proved that ces_p for $1 < p < \infty$ are not isomorphic to any l^q space with $1 \leq q \leq \infty$ (see also [15] for another proof). Moreover, Maligranda-Petrot-Suantai [15] proved recently that Cesàro sequence spaces ces_p for $1 < p < \infty$ are not uniformly nonsquare; that is, there are sequences $\{x_n\}$ and $\{y_n\}$ on the unit sphere such that $\lim_{n \to \infty} \min(\|x_n + y_n\|_{c(p)}, \|x_n - y_n\|_{c(p)}) = 2$. They even proved that these spaces are not B-convex.

We refer here to [3], [15] and the references given there.

Several geometric properties of the Cesàro sequence spaces ces_p were studied in recent years by many mathematicians, and in 1999-2000 it was also proved by Cui-Hudzik [5], Cui-Hudzik-Li [6] and Cui-Meng-Phuciennik [7] that Cesàro sequence spaces ces_p for $1 < p < \infty$ have the fixed point property (cf. also [4, Part 9]).

Cesàro function spaces $Ces_p[0, \infty)$ for $1 \leq p \leq \infty$ were considered by Shiue [16], Hassard-Hussein [12] and Sy-Zhang-Lee [17]. They proved that $Ces_1[0, \infty) = \{0\}$ and $Ces_p[0, \infty)$ for $1 < p < \infty$ are separable Banach spaces and that $Ces_\infty[0, \infty)$ is a nonseparable Banach space. The space $Ces_\infty[0, 1]$ is known as the Korenblyum-Krein-Levin space already introduced in 1948.

By the Hardy inequality the $L^p(I)$ spaces are continuously embedded into $Ces_p(I)$ for $1 < p \leq \infty$ with strict embedding, where $I = [0, 1]$ or $I = [0, \infty)$ (cf. [11] Theorem 327 and [13] Theorem 2). Also if $1 < p < q \leq \infty$, then $Ces_q[0, 1] \subset Ces_p[0, 1]$ with continuous strict embedding. Moreover, $Ces_1[0, 1]$ is a weighted $L^1_w[0, 1]$ space with the weight $w(t) = \ln \frac{1}{t}$ for $0 < t \leq 1$. In fact,

$$\int_0^1 \left(\frac{1}{x} \int_0^x |f(t)| \, dt \right) \, dx = \int_0^1 \left(\int_t^1 \frac{1}{x} \, dx \right) |f(t)| \, dt = \int_0^1 |f(t)| \ln \frac{1}{t} \, dt.$$

We will show that, in contrast to Cesàro sequence spaces, the Cesàro function spaces $Ces_p(I)$ on both $I = [0, 1]$ and $I = [0, \infty)$ for $1 < p < \infty$ are not reflexive and that they do not have the fixed point property.

A Banach space X has the fixed point property (FPP) [resp. weak fixed point property (WFPP)] if every nonexpansive mapping of every closed bounded convex [resp. nonempty weakly compact convex] subset K of X into itself has a fixed point. Recall that T is said to be nonexpansive if $\|Tx - Ty\| \leq \|x - y\|$ for all $x, y \in K$.

The spaces c_0 and l^1 both fail to have the FPP with their classical norms, but they have the WFPP. The space $L^1_w[0, 1]$ does not have the WFPP, as was proved by Alsbach [1].

Our proof that the Cesàro function spaces $Ces_p(I)$ on $I = [0, 1]$ with $1 \leq p \leq \infty$ and on $I = [0, \infty)$ with $1 < p \leq \infty$ fail to have the fixed point property will be carried out by showing that these spaces contain an asymptotically isometric copy of l^1.

A Banach space X contains an asymptotically isometric copy of l^1 if there exists a null sequence (ε_n) in $(0, 1)$ and a sequence (x_n) in X such that

$$\sum_{n=1}^{\infty} (1 - \varepsilon_n)|\alpha_n| \leq \|\sum_{n=1}^{\infty} \alpha_n x_n\|_X \leq \sum_{n=1}^{\infty} |\alpha_n|$$

for all $(\alpha_n) \in l^1$ of scalars. This notion was introduced by Dowling and Lennard in [9], where they proved that such spaces fail to have the FPP.
2. Main results

Cesàro sequence spaces $ces_p, 1 < p < \infty$, are reflexive but not B-convex and they have the fixed point property. In contrast to these sequence spaces the corresponding Cesàro function spaces $Ces_p(I)$ on both $I = [0, 1]$ and $I = [0, \infty)$ for $1 < p < \infty$ are not reflexive and they do not have the fixed point property. Our main result reads:

Theorem 1. Let $1 \leq p \leq \infty$. The Cesàro function space $Ces_p[0, 1]$ contains an asymptotically isometric copy of l^1; that is, there exist a sequence $\{\varepsilon_n\} \subset (0, 1), \varepsilon_n \to 0$ as $n \to \infty$ and a sequence of functions $\{f_n\} \subset Ces_p[0, 1]$ such that for arbitrary $\{\alpha_n\} \subset l^1$ we have

$$(2) \quad \sum_{n=1}^{\infty} (1 - \varepsilon_n)|\alpha_n| \leq \| \sum_{n=1}^{\infty} \alpha_n f_n \|_{C(p)} \leq \sum_{n=1}^{\infty} |\alpha_n|.$$

Before the proof of this theorem we prove the following auxiliary result.

Lemma 1. Let $0 < a < b < 1, f \in Ces_p[0, 1]$ and $supp f := \{t \in [0, 1] : f(t) \neq 0\} \subset [a, b]$. Then

$$(3) \quad (b^{1-p} - 1)^{1/p} \|f\|_1 \leq (p - 1)^{1/p} \|f\|_{C(p)} \leq (a^{1-p} - 1)^{1/p} \|f\|_1,$$

for $1 < p < \infty$ and

$$(4) \quad 1 - \frac{1}{b} \|f\|_1 \leq \|f\|_{C(1)} \leq \frac{1}{a} \|f\|_1, \quad \frac{1}{b} \|f\|_1 \leq \|f\|_{C(\infty)} \leq \frac{1}{a} \|f\|_1,$$

where $\|f\|_1 = \int_0^1 |f(t)| \, dt$.

Proof. It is obvious that for any $0 < x \leq 1$ we have

$$\frac{1}{x} \|f\|_1 \chi_{[b, 1]}(x) \leq F_f(x) := \frac{1}{x} \int_0^x |f(t)| \, dt \leq \frac{1}{x} \|f\|_1 \chi_{[a, 1]}(x).$$

Since, for every $c \in (0, 1), \int_c^1 t^{-p} \, dt = \frac{1}{1-p} - \frac{1}{p}$ and $\int_c^1 t^{-1} \, dt = \ln \frac{1}{c}$ we obtain (3) and (4) for $p = 1$. In the case of $p = \infty$ we see that

$$\frac{1}{b} \|f\|_1 \leq \|f\|_{L^\infty[0, 1]} \leq \frac{1}{a} \|f\|_1,$$

and the lemma is proved. \hfill \Box

Proof of Theorem 1. For $1 < p < \infty$ we set

$$g_n = \chi_{[a_n, a_{n+1})}, \quad a_n = 2^{1/(1-p)} \left(1 - \frac{1}{2^n}\right), \quad n = 1, 2, \ldots.$$

Since $\|g_n\|_1 = a_{n+1} - a_n = 2^{1/(1-p)} \cdot 2^{-n-1}$ and $a_n^{1-p} - 1 = \frac{2}{(1-2^{-n})^{p-1}} - 1$, then, by Lemma 1 (see the second estimate in (3)), this yields that

$$2^{-1/(1-p)} 2^{n+1} (p - 1)^{1/p} \|g_n\|_{C(p)} \leq \left(\frac{2}{(1-2^{-n})^{p-1}} - 1\right)^{1/p}.$$

Let $f_n = g_n / \|g_n\|_{C(p)}$ and $\alpha_n \in \mathbb{R}$ for $n = 1, 2, \ldots$. Since $\text{supp} g_n \subset [2^{1/(1-p)} - 1, 2^{1/(1-p)}]$ for every $n \in \mathbb{N}$ it follows from Lemma 1 (see the first estimate in (3))
that
\[\| \sum_{n=1}^{\infty} \alpha_n f_n \|_{C(p)} \geq \| \sum_{n=1}^{\infty} \alpha_n f_n \|_1 \]
\[= \sum_{n=1}^{\infty} \frac{|\alpha_n| 2^{1/(1-p)}}{2^{n+1}(p-1)^{1/p} \| g_n \|_{C(p)}} \]
\[\geq \sum_{n=1}^{\infty} \left(\frac{2}{(1-2^{-n})^{p-1} - 1} \right)^{-1/p} |\alpha_n|. \]

Denote
\[\varepsilon_n = 1 - \left(\frac{2}{(1-2^{-n})^{p-1} - 1} \right)^{-1/p}. \]

Then \(\{ \varepsilon_n \} \subset (0,1) \) and \(\varepsilon_n \to 0 \) as \(n \to \infty \). This means that the left-hand side of (2) is proved. The right-hand side of (2) is obvious since \(\| f_n \|_{C(p)} = 1 \).

In the case \(p = \infty \) we take \(f_n = g_n / \| g_n \|_{C(\infty)} \), where \(g_n = \chi_{[a_n,a_{n+1}]} \) with \(a_n = 1 - 2^{-n} \), \(n = 1, 2, \ldots \). Then \(\| g_n \|_1 \leq 2^{-n-1} \) and, by Lemma 1 (see the second estimate in (4)) \(\| g_n \|_{C(\infty)} \leq 1/2 - 2^{-n-1} \) or \(2^{n+1} \| g_n \|_{C(\infty)} \leq 1/2 - 2^{-n} \). Since \(\text{supp} \; g_n \subset [1/2, 1) \), for every \(n \in \mathbb{N} \), it follows from Lemma 1 (see the first estimate in (4)) that:

\[\| \sum_{n=1}^{\infty} \alpha_n f_n \|_{C(\infty)} \geq \| \sum_{n=1}^{\infty} \alpha_n f_n \|_1 \]
\[= \sum_{n=1}^{\infty} 2^{n+1} |\alpha_n| \| g_n \|_{C(\infty)} \geq \sum_{n=1}^{\infty} (1 - 2^{-n}) |\alpha_n|, \]

and \(\varepsilon_n = 2^{-n} \) is a required sequence.

In the case \(p = 1 \) we take \(g_n = \chi_{[a_n,a_{n+1})} \), where \(a_n = \frac{1}{3} (1 - 2^{-n}) \), \(n = 1, 2, \ldots \) and argue in a similar way. The proof is complete. \(\square \)

The analogous result holds for Cesàro function spaces on \([0, \infty)\).

Theorem 2. Let \(1 < p \leq \infty \). The Cesàro function space \(\text{Ces}_p[0, \infty) \) contains an asymptotically isometric copy of \(l^1 \).

Proof. We consider only the case \(1 < p < \infty \) (the case \(p = \infty \) can be proved similarly as in Theorem 1). We take \(g_n = \chi_{[a_n,a_{n+1})} \) with \(a_n = 1 - 2^{-n} \), \(n = 1, 2, \ldots \) and continue the proof as in Theorem 1, observing that the estimate corresponding to (3) for \(\text{Ces}_p[0, \infty) \) will be (for \(0 < a < b < \infty \))

\[b^{1/p-1} \| f \|_1 \leq (p-1)^{1/p} \| f \|_{C(p)} \leq a^{1/p-1} \| f \|_1, \]

with \(\| f \|_1 = \int_0^\infty |f(t)| \, dt \).
and then for $f_n = g_n / \|g_n\|_{C(p)}$ we have that

$$
\left\| \sum_{n=1}^{\infty} \alpha_n f_n \right\|_{C(p)} \geq \frac{\| \sum_{n=1}^{\infty} \alpha_n f_n \|_1}{(p-1)^{1/p}}
$$

$$
= \sum_{n=1}^{\infty} \frac{|\alpha_n|}{2^{n+1}(p-1)^{1/p}\|g_n\|_{C(p)}} \geq \sum_{n=1}^{\infty} a_n^{1-1/p}|\alpha_n|
$$

$$
= \sum_{n=1}^{\infty} \left(1 - 2^{-n}\right)^{1-1/p}|\alpha_n| = \sum_{n=1}^{\infty} \left(1 - \varepsilon_n\right)|\alpha_n|,
$$

and $\varepsilon_n = 1 - (1 - 2^{-n})^{1-1/p}$ is a required sequence. The proof is complete. \square

Remark 1. It is obvious from Theorem 1 and Theorem 2 that the Cesàro function spaces $Ces_p(I)$ for $1 < p \leq \infty$ are not reflexive.

Dowling-Lennard [9] proved that if a Banach space X contains an asymptotically isometric copy of l^1, then there exists a nonexpansive mapping defined on a closed bounded convex subset of X without a fixed point, i.e., that X fails to have the fixed point property (see also [10, Theorem 2.3 and Corollary 2.11]). By the Dilworth-Girardi-Hagler result [8, Theorem 2] the dual space X^* does not have the fixed point property since they proved there that X contains an asymptotically isometric copy of l^1 if and only if the dual space X^* contains an isometric copy of $L^1[0,1]$. Combining these results with our Theorem 1 and Theorem 2 we obtain immediately our main result on the fixed point property of Cesàro function spaces and their dual spaces.

Theorem 3. If either $1 \leq p \leq \infty$ and $I = [0,1]$ or $1 < p \leq \infty$ and $I = [0,\infty)$, then the Cesàro function spaces $Ces_p(I)$ and their dual spaces $Ces_p(I)^*$ fail to have the fixed point property.

Theorem 3 gives information about the fixed point property, and therefore it is natural to ask what one can say about the weak fixed point property.

Note that the space $Ces_1[0,1]$ is isometric to $L^1[0,1]$ by the equality [1], and by the Alspach result [1] $L^1[0,1]$ fails to have WFPP; therefore $Ces_1[0,1]$ also fails to have WFPP.

By combining Theorem 1, Theorem 2 and the Dilworth-Girardi-Hagler result [8, Corollary 13] we have the following result:

Proposition 1. The dual spaces to the Cesàro function spaces $Ces_p(I)^*$ do not have the weak fixed point property.

Proposition 2. The Cesàro function spaces $Ces_p(I)$ for $1 < p < \infty$ are not isomorphic to any $L^q(I)$ space for $1 \leq q \leq \infty$. In particular, they are not isomorphic to $L^1(I)$.

Of course, $Ces_p(I)$ for $1 < p < \infty$, as nonreflexive and separable spaces, cannot be isomorphic to any $L^q(I)$ with $1 < q < \infty$ or $q = \infty$. The statement for $q = 1$ will be proved in the forthcoming paper [2].
References

Department of Mathematics and Mechanics, Samara State University, Acad. Pavlov 1, 443011 Samara, Russia

E-mail address: astashkn@ssu.samara.ru

Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden

E-mail address: lech@sm.luth.se