Cesàro function spaces fail the fixed point property
HTML articles powered by AMS MathViewer
- by Sergei V. Astashkin and Lech Maligranda
- Proc. Amer. Math. Soc. 136 (2008), 4289-4294
- DOI: https://doi.org/10.1090/S0002-9939-08-09599-3
- Published electronically: June 26, 2008
- PDF | Request permission
Abstract:
The Cesàro sequence spaces $ces_{p}, 1 < p < \infty$, are reflexive but they have the fixed point property. In this paper we prove that in contrast to these sequence spaces the corresponding Cesàro function spaces $Ces_{p}$ on both $[0, 1]$ and $[0, \infty )$ for $1 < p < \infty$ are not reflexive and they fail to have the fixed point property.References
- Dale E. Alspach, A fixed point free nonexpansive map, Proc. Amer. Math. Soc. 82 (1981), no. 3, 423–424. MR 612733, DOI 10.1090/S0002-9939-1981-0612733-0
- S. V. Astashkin and L. Maligranda, Geometry of Cesàro function spaces, in preparation.
- Grahame Bennett, Factorizing the classical inequalities, Mem. Amer. Math. Soc. 120 (1996), no. 576, viii+130. MR 1317938, DOI 10.1090/memo/0576
- S. Chen, Y. Cui, H. Hudzik, and B. Sims, Geometric properties related to fixed point theory in some Banach function lattices, Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 339–389. MR 1904283
- Yunan Cui and Henryk Hudzik, Some geometric properties related to fixed point theory in Cesàro spaces, Collect. Math. 50 (1999), no. 3, 277–288. MR 1744077
- Yunan Cui, Henryk Hudzik, and Yanhong Li, On the García-Falset coefficient in some Banach sequence spaces, Function spaces (Poznań, 1998) Lecture Notes in Pure and Appl. Math., vol. 213, Dekker, New York, 2000, pp. 141–148. MR 1772119
- Yunan Cui, Chenghui Meng, and Ryszard Płuciennik, Banach-Saks property and property $(\beta )$ in Cesàro sequence spaces, Southeast Asian Bull. Math. 24 (2000), no. 2, 201–210. MR 1810056, DOI 10.1007/s100120070003
- Stephen J. Dilworth, Maria Girardi, and James Hagler, Dual Banach spaces which contain an isometric copy of $L_1$, Bull. Polish Acad. Sci. Math. 48 (2000), no. 1, 1–12. MR 1751149
- P. N. Dowling and C. J. Lennard, Every nonreflexive subspace of $L_1[0,1]$ fails the fixed point property, Proc. Amer. Math. Soc. 125 (1997), no. 2, 443–446. MR 1350940, DOI 10.1090/S0002-9939-97-03577-6
- P. N. Dowling, C. J. Lennard, and B. Turett, Renormings of $l^1$ and $c_0$ and fixed point properties, Handbook of metric fixed point theory, Kluwer Acad. Publ., Dordrecht, 2001, pp. 269–297. MR 1904280
- G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press, 1952. 2d ed. MR 0046395
- B. D. Hassard and D. A. Hussein, On Cesàro function spaces, Tamkang J. Math. 4 (1973), 19–25. MR 333700
- Alois Kufner, Lech Maligranda, and Lars-Erik Persson, The Hardy inequality, Vydavatelský Servis, Plzeň, 2007. About its history and some related results. MR 2351524
- Y. Q. Liu, B. E. Wu and P. Y. Lee, Method of Sequence Spaces, Guangdong of Science and Technology Press, 1996 (in Chinese).
- Lech Maligranda, Narin Petrot, and Suthep Suantai, On the James constant and $B$-convexity of Cesàro and Cesàro-Orlicz sequences spaces, J. Math. Anal. Appl. 326 (2007), no. 1, 312–331. MR 2277785, DOI 10.1016/j.jmaa.2006.02.085
- Jau-shyong Shiue, A note on Cesàro function space, Tamkang J. Math. 1 (1970), no. 2, 91–95. MR 276751
- Polly Wee Sy, Wen Yao Zhang, and Peng Yee Lee, The dual of Cesàro function spaces, Glas. Mat. Ser. III 22(42) (1987), no. 1, 103–112 (English, with Serbo-Croatian summary). MR 940098
Bibliographic Information
- Sergei V. Astashkin
- Affiliation: Department of Mathematics and Mechanics, Samara State University, Acad. Pavlov 1, 443011 Samara, Russia
- MR Author ID: 197703
- Email: astashkn@ssu.samara.ru
- Lech Maligranda
- Affiliation: Department of Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden
- MR Author ID: 118770
- Email: lech@sm.luth.se
- Received by editor(s): October 18, 2007
- Published electronically: June 26, 2008
- Additional Notes: This research was supported by a grant from the Royal Swedish Academy of Sciences for cooperation between Sweden and the former Soviet Union (project 35440). The results were presented by the second author at The 8th International Conference on Fixed Point Theory and Its Applications, 16-22 July 2007, Chiang Mai, Thailand.
- Communicated by: N. Tomczak-Jaegermann
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 4289-4294
- MSC (2000): Primary 46E30, 46B20, 46B42
- DOI: https://doi.org/10.1090/S0002-9939-08-09599-3
- MathSciNet review: 2431042