A version of Fabry’s theorem for power series with regularly varying coefficients
HTML articles powered by AMS MathViewer
- by Alexandre Eremenko
- Proc. Amer. Math. Soc. 136 (2008), 4389-4394
- DOI: https://doi.org/10.1090/S0002-9939-08-09652-4
- Published electronically: July 24, 2008
- PDF | Request permission
Abstract:
For real power series whose non-zero coefficients satisfy $|a_m|^{1/m} \to ~1$, we prove a stronger version of Fabry’s theorem relating the frequency of sign changes in the coefficients and analytic continuation of the sum of the power series.References
- N. U. Arakelyan and V. A. Martirosyan, The location of singularities of power series on the boundary of the disk of convergence, Izv. Akad. Nauk Armyan. SSR Ser. Mat. 22 (1987), no. 1, 3–21, 102 (Russian, with English and Armenian summaries). MR 898105
- Norair Arakelian, Wolfgang Luh, and Jürgen Müller, On the localization of singularities of lacunar power series, Complex Var. Elliptic Equ. 52 (2007), no. 7, 561–573. MR 2340942, DOI 10.1080/17476930701246396
- Ludwig Bieberbach, Analytische Fortsetzung, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 3, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955 (German). MR 0068621
- A. Eremenko, Densities in Fabry’s theorem, preprint, arXiv:0709.2360.
- E. Fabry, Sur les séries de Taylor qui ont une infinité de points singuliers, Acta Math. 22 (1899), no. 1, 65–87 (French). MR 1554901, DOI 10.1007/BF02417871
- Bent Fuglede, Some properties of the Riesz charge associated with a $\partial$-subharmonic function, Potential Anal. 1 (1992), no. 4, 355–371. MR 1245891, DOI 10.1007/BF00301788
- A. F. Grishin, Sets of regular growth of entire functions. I, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 40 (1983), 36–47 (Russian). MR 738442
- Lars Hörmander, The analysis of linear partial differential operators. I, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 256, Springer-Verlag, Berlin, 1983. Distribution theory and Fourier analysis. MR 717035, DOI 10.1007/978-3-642-96750-4
- Paul Koosis, The logarithmic integral. II, Cambridge Studies in Advanced Mathematics, vol. 21, Cambridge University Press, Cambridge, 1992. MR 1195788, DOI 10.1017/CBO9780511566202
- B. Ja. Levin, Distribution of zeros of entire functions, Revised edition, Translations of Mathematical Monographs, vol. 5, American Mathematical Society, Providence, R.I., 1980. Translated from the Russian by R. P. Boas, J. M. Danskin, F. M. Goodspeed, J. Korevaar, A. L. Shields and H. P. Thielman. MR 589888
- G. Pólya, Über gewisse notwendige Determinantenkriterien für die Fortsetzbarkeit einer Potenzreihe, Math. Ann. 99 (1928), no. 1, 687–706 (German). MR 1512473, DOI 10.1007/BF01459120
- G. Pólya, Untersuchungen über Lücken und Singularitäten von Potenzreihen, Math. Z. 29 (1929), no. 1, 549–640 (German). MR 1545027, DOI 10.1007/BF01180553
- C. de la Valle-Poussin, Potentiel et problème généralisé de Dirichlet, Math. Gazette, 22 (1938) 17–36.
Bibliographic Information
- Alexandre Eremenko
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- MR Author ID: 63860
- Email: eremenko@math.purdue.edu
- Received by editor(s): November 19, 2007
- Published electronically: July 24, 2008
- Additional Notes: The author was supported by NSF grant DMS-0555279.
- Communicated by: Mario Bonk
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 136 (2008), 4389-4394
- MSC (2000): Primary 30B10, 30B40
- DOI: https://doi.org/10.1090/S0002-9939-08-09652-4
- MathSciNet review: 2431054