SPECTRAL RADIUS ALGEBRAS AND C_0 CONTRACTIONS

SRDJAN PETROVIC

(Communicated by Marius Junge)

Abstract. We consider the spectral radius algebras associated to C_0 contractions. If A is such an operator we show that the spectral radius algebra B_A always properly contains the commutant of A.

Let \mathcal{H} be a complex, separable Hilbert space and let $\mathcal{L}(\mathcal{H})$ denote the algebra of all bounded linear operators on \mathcal{H}. If T is an operator in $\mathcal{L}(\mathcal{H})$, then a subspace $M \subset \mathcal{H}$ is invariant for T if $TM \subset M$, and it is hyperinvariant for T if it is invariant for every operator in the commutant $\{T\}'$ of T. A nontrivial invariant subspace (n. i. s.) is one that is neither \mathcal{H} nor the zero subspace. It was shown in [5] that one can associate the so-called spectral radius algebra B_A to each operator A. Such an algebra always contains $\{A\}'$, so, when it has an n. i. s. it represents a generalization of the concept of a hyperinvariant subspace. This is the case when A is compact (cf. [5]) or one type of normal operators (cf. [2]). Of course, it is important to establish that the inclusion $\{A\}' \subset B_A$ is proper. Although this has been done for some classes of operators (cf. [2], [3], [5], [6]), the question is, as of this writing, still open.

This paper can be regarded as a sequel to [4] where an extensive investigation of Jordan blocks and C_0 contractions (to be defined below) was conducted. A prominent role in this study was played by the so-called extended eigenvalues. (A complex number λ is an extended eigenvalue of A if there is a nonzero operator X such that $AX = \lambda XA$.) As we will see, the presence of an eigenvalue or an extended eigenvalue is sufficient to guarantee that $B_A \neq \{A\}'$. Unfortunately, not every Jordan block $S(\theta)$ has either of these. Nevertheless, we will demonstrate that the inclusion under consideration is proper when A belongs to the class C_0 (Theorems 3, 5, and 18). Our method utilizes the relationship between $S(\theta)$ and the shift S as well as the quasisimilarity model for C_0 contractions.

We briefly review the relevant facts and notation. A contraction A is completely nonunitary if there is no invariant subspace M for A such that $A|M$ is a unitary operator. A completely nonunitary contraction A is said to be of class C_0 if there exists a nonzero function $h \in H^\infty$ such that $h(A) = 0$. The inner function v such that $vH^\infty = \{u \in H^\infty : u(A) = 0\}$ is the minimal function of A and is denoted by m_A. A very important subclass of C_0 contractions are the Jordan blocks. Throughout the paper we will use S to denote the forward unilateral shift of multiplicity 1, and $\{e_n\}_{n=0}^\infty$ the orthonormal basis such that $Se_n = e_{n+1}$, $n \geq 0$. One knows that S can be viewed as multiplication by z on the Hardy space H^2.

Received by the editors October 1, 2007.

2000 Mathematics Subject Classification. Primary 47A15; Secondary 47A65, 47B15.

©2008 American Mathematical Society
Reverts to public domain 28 years from publication
From this viewpoint, every invariant subspace of S is of the form θH^2 for some inner function θ. The compression of S to $H^2 \ominus \theta H^2$ is called a Jordan block and denoted by $S(\theta)$. Also, if θ is an inner function, then there exists a Blaschke product b, a singular inner function s, and a constant γ, $|\gamma| = 1$, such that $\theta = \gamma bs$. We refer to this as the canonical factorization of θ. Furthermore, there is a finite, positive, singular measure μ on the circle T such that

$$s(z) = \exp \left(-\int_T \frac{\xi + z}{\xi - z} \, d\mu(\xi) \right).$$

For more information one may consult [1].

Given an operator $A \in \mathcal{L}(\mathcal{H})$ with spectral radius r and $m \in \mathbb{N}$, we define $d_m = m/(1 + rm)$ and $R_m = (\sum_{n=0}^{\infty} d_m^n A^n)^{1/2}$. The spectral radius algebra B_A consists of all operators $T \in \mathcal{L}(\mathcal{H})$ such that $\sup_m \|R_m T R_m^{-1}\| < \infty$. The following result from [5] summarizes some of the important properties of B_A (cf. [5, Proposition 2.3, Corollary 2.4]).

Proposition 1. Let A be an operator in $\mathcal{L}(\mathcal{H})$. Then $T \in B_A$ if and only if there exists $M > 0$ such that, for all $x \in \mathcal{H}$ and $m \in \mathbb{N}$, $\sum_{n \geq 0} d_m^n \|A^n x\|^2 \leq M \sum_{n \geq 0} d_m^n \|A^n x\|^2$. When $AT = TA$, $|\lambda| \leq 1$, and in particular if $AT = TA$, then $T \in B_A$.

Proposition 1 has a consequence whose verification is straightforward and we leave it to the reader.

Corollary 2. If $Au = \lambda u$ for some $|\lambda| < r(A)$, then, for any $v \in \mathcal{H}$, the rank one operator $u \otimes v$ belongs to B_A. Furthermore, if $A^* v \neq \lambda v$, then $u \otimes v$ does not commute with A. In particular, if A has nontrivial kernel, then $B_A \neq \{A\}'$.

Now we can prove our first result about the inclusion $\{A\}' \subset B_A$.

Theorem 3. Let $A \in C_0$ and suppose that m_A is neither a singular inner function nor a Blaschke product with all zeros of the same modulus. Then $B_A \neq \{A\}'$.

Proof. The assumption is that $m_A = \gamma bs$ and that $b(\alpha) = 0$ with $|\alpha| < r(A)$. This implies that α is an eigenvalue of A, whence the result follows from Corollary 2.

Proposition 1 shows that, in order to establish that an operator $T \in B_A$, it suffices to show that it satisfies $AT = \lambda TA$ for some $\lambda \in \mathbb{C}$, $|\lambda| \leq 1$. The following result (cf. [5, Theorem 4.5]) provides a condition under which a C_0 contraction has an extended eigenvalue. Here we use the convention that, if μ is a measure and $\lambda \in \mathbb{T}$, then $\mu\lambda(E) = \mu(\lambda E)$.

Theorem 4. Let A be a C_0 contraction and $|\lambda| = 1$. The equation $AX = \lambda XA$ has a solution $X \neq 0$ if and only if the measures μ and $\mu\lambda$ are not mutually singular or if $\alpha = \lambda \beta$ for some zeros α, β of m_A.

Theorem 3 allows us to consider the situation when m_A is either a singular inner function or a Blaschke product with all zeros of the same modulus. Now we make a further reduction based on Theorem 4.

Theorem 5. Let $A \in C_0$ and suppose that m_A is either a singular inner function such that the support of μ contains more than one point or that m_A is a Blaschke product with at least 2 different zeros of the same modulus. Then $B_A \neq \{A\}'$.
Let \(\theta \) be a singular inner function with the singular measure supported at one point. We will first explore both of these possibilities in the special case when \(A = S(\theta) \) and, of course, \(m_A = \theta \). In the former, we will need a fact established in [3].

Theorem 6. Let \(A \) be an operator acting on a finite dimensional space. Then \(B_A \neq \{A\}' \).

Corollary 7. If \(\theta \) is a Blaschke product with only one zero, then \(S(\theta) \) acts on a finite dimensional Hilbert space. Consequently, \(B_{S(\theta)} \neq \{S(\theta)\}' \)

The case when \(\theta \) is a singular inner function with the singular measure \(\mu \) supported at one point \(\lambda \) on the circle is much more complicated. One knows (cf. [1, p. 22]) that in this case

\[
\theta(z) = \gamma \exp \left\{ \frac{z + \lambda}{z - \lambda} p \right\},
\]

with \(|\gamma| = 1 \) and \(p = \mu(\{\lambda\}) \).

We will exploit the relationship between \(S(\theta) \) and the unilateral shift \(S \). In the rest of the paper, unless specifically noted, \(R_m \) will always mean \(R_m(S^*) \); i.e., it is associated to \(S^* \). We start with a computational result. We leave its verification to the reader.

Lemma 8. For all \(m \in \mathbb{N} \) and all \(i \geq 0 \), \(R_m e_i = \alpha_{m,i} e_i \), where \(\alpha_{m,i} \) are complex numbers satisfying \(|\alpha_{m,i}| \leq \sqrt{i+1}, m \in \mathbb{N}, i \geq 0 \).

Before we proceed, we notice that, as a consequence of Lemma 8, \(B_{S^*} \) is quite different from \(B_S = \mathcal{L}(\mathcal{H}) \).

Theorem 9. \(B_{S^*} \) is weakly dense in, but properly contained in, \(\mathcal{L}(\mathcal{H}) \).

Proof. Since \(S^* \) is not a multiple of an isometry, the fact that \(B_{S^*} \neq \mathcal{L}(\mathcal{H}) \) follows from [2] Theorem 2.7. In order to establish that \(B_{S^*} \) is weakly dense in \(\mathcal{L}(\mathcal{H}) \) it suffices to show that, for any \(i, j \geq 0 \), the rank one operator \(e_i \otimes e_j \) belongs to \(B_{S^*} \). Since \(\|R_m e_i\| \leq \sqrt{i+1} \) and \(R_m^{-1} \) is a contraction, the result follows easily.

Corollary 10. If \(f \in H^2 \) and \(f' \in H^2 \), then \(\sup_m \|R_m f\| < \infty \).

Our next goal is to prove that the function \(f \) in Corollary 10 can be found in a specific subspace. Let \(J \) be the antiderivative operator on \(H^2 \), i.e., an operator such that, for all \(f \in H^2 \), \((Jf)' = f \) and \((Jf)(0) = 0 \). We will show that there is a function \(g \in H^2 \) such that \(f = J^* g \in H^2 \cap \theta H^2 \). Clearly, \(J^* g \perp \theta H^2 \) if and only if \(g \perp J(\theta H^2) \), so it suffices to establish that \(J(\theta H^2) \) is a subspace of \(H^2 \) whose codimension is infinite.
Theorem 11. If \(\theta \) is a singular inner function such that the associated singular measure is supported at one point, and if \(J \) is the antiderivative operator as above, then the codimension of \(J(\theta H^2) \) in \(H^2 \) is infinite.

Proof. Suppose that \(\theta \) is as in (1), and that the codimension of \(J(\theta H^2) \) is finite. Let \(p_0 = 1 \), and \(p_n = z^{n-1}(2z - 2\lambda - 2p\lambda) + (n - 1)z^{n-2}(z - \lambda)^2 \) for \(n \geq 1 \). It is easy to see that the span of polynomials \(\{p_n\}_{n=0}^\infty \) is dense in \(H^2 \). Therefore, the span of \(\{J(\theta p_n)\}_{n=0}^\infty \) has finite codimension.

On the other hand, a calculation shows that \(-2\lambda^p\theta = (z - \lambda)^2\theta'\), so for all \(f \in H^2 \), \(-2\lambda^p J(\theta f) = J((z - \lambda)^2\theta f) = (z - \lambda)^2\theta f - J[(z - \lambda)^2\theta f' + 2(z - \lambda)\theta f] \). It follows that

\[
J[(2z - 2\lambda - 2p\lambda)\theta f + (z - \lambda)^2\theta f'] = (z - \lambda)^2\theta f.
\]

By choosing \(f = z^{n-1} \), \(n \in \mathbb{N} \), we obtain that \(J(\theta p_n) = (z - \lambda)^2z^{-n+1}\theta \) for all \(n \in \mathbb{N} \). Consequently, \(J(\theta p_n) \in \theta H^2 \) and the span of \(\{J(\theta p_n)\}_{n=1}^\infty \) is a subspace of \(\theta H^2 \). Since the latter has infinite codimension the result follows. □

From this theorem we obtain an important consequence.

Corollary 12. There exists a nonzero function \(f \in H^2 \ominus \theta H^2 \) such that \(f' \in H^2 \) and, consequently, such that \(\sup_m \|R_m f\| < \infty \).

Proof. By Theorem 11 there exists a nonconstant function \(g \in H^2 \ominus J(\theta H^2) \). Let \(f = J^*g \). It is easy to see that \(f \in H^2 \ominus \theta H^2 \) and \(f \neq 0 \). Furthermore, if \(g = \sum g_n z^n \), a straightforward calculation shows that \((J^*g)' = \sum_{n \geq 0} (n + 1)/(n + 2)g_{n+2} z^n \). Thus, \(f' \in H^2 \) and an application of Corollary 10 completes the proof. □

The significance of the membership of \(f \) (in Corollary 12) in \(H^2 \ominus \theta H^2 \) lies in the fact that we can now deduce an analogous result for \(R_m(S(\theta)^*) \).

Corollary 13. Suppose that \(\theta \) is a singular inner function as in (1). There exists a nonzero function \(u \in H^2 \) such that \(\sup_m \|R_m(S(\theta)^*u)\| < \infty \).

Proof. Notice that both \(S(\theta)^* \) and \(S^* \) have the spectral radius 1, so \(d_m(S(\theta)^*) = d_m(S^*) = m/(m + 1) \). Therefore, relative to the decomposition \(H^2 = \theta H^2 \oplus (H^2 \ominus \theta H^2) \), taking into account that \(H^2 \ominus \theta H^2 \) is invariant for \(S^* \), \(R_m^2(S^*) = \left(\begin{array}{cc} * & * \\ * & R_m^2(S(\theta)^*) \end{array} \right) \).

Let \(f \) be the function provided by Corollary 12. Clearly, we can write \(f = 0 + u \) relative to the same decomposition, and it is easy to see that \(\|R_m(S(\theta)^*u)\| = \|R_m(S^*)f\| \). □

Corollary 13 describes a property of \(S(\theta)^* \). Since we are more interested in \(S(\theta) \) it is useful to recall [1 Corollary 3.1.7]. We use the notation \(\bar{\theta}(z) = \overline{\theta(z)} \).

Theorem 14. For every inner function \(\theta \) the adjoint \(S(\theta)^* \) is unitarily equivalent to \(S(\bar{\theta}) \).

Theorem 14 allows us to move the focus of our investigation from the inclusion \(\{A\}' \subset B_A \) to \(\{B\}' \subset B_B \), where \(B \) is unitarily equivalent to \(A \). There is no loss of generality in doing so since the unitary equivalence between \(A \) and \(B \) gives rise to an algebra isomorphism \(\phi \) such that \(\phi(\{A\}') = \{B\}' \) and \(\phi(B_A) = B_B \) (cf. [2 Theorem 2.4]). Finally, we can prove our main result concerning the Jordan blocks.
Theorem 15. $B_{S(\theta)} \neq \{S(\theta)\}'$

Proof. Combining Theorem 3 Theorem 5 and Corollary 7 we see that the only case to consider is when θ is given by (1). By Theorem 14 it suffices to show that $B_{S(\theta)} \neq \{S(\theta)\}'$. If u is the function supplied by Corollary 13 then $u \otimes v \in B(S(\theta)')$ for any $v \in H^2$. However, $u \otimes v$ commutes with $S(\theta)'$ if and only if v is an eigenvector for $S(\theta)$. □

Next, we return to contraction operators of class C_0. In order to obtain a better insight into their structure we rely on the following result (cf. [11 Theorem 3.5.1]).

Theorem 16. Let A be a C_0 contraction. Then A is quasisimilar to an infinite direct sum of Jordan blocks $\bigoplus_i S(\theta_i)$.

Since Theorem 16 relates quasisimilar operators we need to establish the relationship between their respective spectral radius algebras as well as between their commutants.

Lemma 17. Suppose that A and B are quasisimilar C_0 contractions and let Y, Z be quasi-affinities such that $AY = YB$ and $ZA = BZ$. If $T \in B_B$, then $YTZ \in B_A$. Also $T \in \{B\}'$ if and only if $YTZ \in \{A\}'$.

Proof. A and B have essentially the same quasisimilarity model, so they share the same spectral radius. In particular, $d_m(A) = d_m(B)$ and we will denote both by d_m. A calculation shows that $A^n Y TZ = Y B^n T Z$, so, for all $x \in H$, $\sum d^2_m \| A^n Y TZ x \|^2 \leq \| Y \|^2 \sum d^2_m \| B^n T Z x \|^2$. Now, if $T \in B_B$, Proposition 11 shows that there exists $M > 0$ such that, for all $x \in H$, the last expression is dominated by $M^2 \| Y \|^2 \sum d^2_m \| B^n Z x \|^2 = M^2 \| Y \|^2 \sum d^2_m \| Z A^n x \|^2 \leq M^2 \| Y \|^2 \sum d^2_m \| A^n x \|^2$. Consequently, $YTZ \in B_A$. The other assertion is even easier: $AYTZ = YBTZ = YTBZ = YTZA$.

Now we can make the final step in our analysis.

Theorem 18. Let A be a C_0 contraction and suppose that m_A is either a Blaschke product with only one zero or a singular inner function such that the support of μ consists of a single point $\lambda \in T$. Then $B_A \neq \{A\}'$.

Proof. By Theorem 16 A is quasisimilar to a direct sum $S(\Theta) = \bigoplus_i S(\theta_i)$, where each inner function θ_i is either a Blaschke product with only one zero or a singular inner function of the form (1) for some $p > 0$. Therefore (cf. [11 Theorem 2.4.11]), $r(A) = r(S(\Theta)) = r(S(\theta_1))$. By Theorem 15 there is $X \in B_{S(\theta_1)} \setminus \{S(\theta_1)\}'$ and it is easy to see that the operator $X \oplus 0 \oplus 0 \oplus \cdots \in B_{S(\Theta)} \setminus \{S(\Theta)\}'$. Now the result follows from Lemma 17. □

References

Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49008

E-mail address: srdjan.petrovic@wmich.edu.