Upper bounds for finite additive $2$-bases
HTML articles powered by AMS MathViewer
- by Gang Yu
- Proc. Amer. Math. Soc. 137 (2009), 11-18
- DOI: https://doi.org/10.1090/S0002-9939-08-09430-6
- Published electronically: July 18, 2008
- PDF | Request permission
Abstract:
For a positive integer $N$, a set $\mathcal {A}\subset [0,N]\cap \mathbb {Z}$ is called a $2$-basis for $N$ if every integer $n\in [0,N]$ can be represented as $n=a+b$, where $a, b\in \mathcal {A}$. In this paper, we give a lower bound estimate for the cardinality of an additive $2$-basis for $N$, as $N\to \infty$, which improves the existing results on this topic.References
- C. Sinan Güntürk and Melvyn B. Nathanson, A new upper bound for finite additive bases, Acta Arith. 124 (2006), no. 3, 235–255. MR 2250418, DOI 10.4064/aa124-3-3
- Norbert Hämmerer and Gerd Hofmeister, Zu einer Vermutung von Rohrbach, J. Reine Angew. Math. 286(287) (1976), 239–247. MR 422189, DOI 10.1515/crll.1976.286-287.239
- Gerd Hofmeister, Thin bases of order two, J. Number Theory 86 (2001), no. 1, 118–132. MR 1813532, DOI 10.1006/jnth.2000.2567
- Walter Klotz, Eine obere Schranke für die Reichweite einer Extremalbasis zweiter Ordnung, J. Reine Angew. Math. 238 (1969), 161–168 (German). MR 246848, DOI 10.1515/crll.1969.238.161
- L. Moser, On the representation of $1,\,2,\cdots ,n$ by sums, Acta Arith. 6 (1960), 11–13. MR 122800, DOI 10.4064/aa-6-1-11-13
- L. Moser, J. R. Pounder, and J. Riddell, On the cardinality of $h$-bases for $n$, J. London Math. Soc. 44 (1969), 397–407. MR 238798, DOI 10.1112/jlms/s1-44.1.397
- Arnulf Mrose, Untere Schranken für die Reichweiten von Extremalbasen fester Ordnung, Abh. Math. Sem. Univ. Hamburg 48 (1979), 118–124 (German). MR 537452, DOI 10.1007/BF02941296
- J. Riddell, On bases for sets of integers, Master’s Thesis, University of Alberta, 1960.
- Hans Rohrbach, Ein Beitrag zur additiven Zahlentheorie, Math. Z. 42 (1937), no. 1, 1–30 (German). MR 1545658, DOI 10.1007/BF01160061
- Gang Yu, An upper bound for $B_2[g]$ sets, J. Number Theory 122 (2007), no. 1, 211–220. MR 2287120, DOI 10.1016/j.jnt.2006.04.008
Bibliographic Information
- Gang Yu
- Affiliation: Department of Mathematical Sciences, Kent State University, Kent, Ohio 44242
- Email: yu@math.kent.edu
- Received by editor(s): June 25, 2007
- Received by editor(s) in revised form: November 15, 2007
- Published electronically: July 18, 2008
- Additional Notes: The author was supported by NSF grant DMS-0601033.
- Communicated by: Ken Ono
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 11-18
- MSC (2000): Primary 11B13
- DOI: https://doi.org/10.1090/S0002-9939-08-09430-6
- MathSciNet review: 2439419