Inequalities for quantum Fisher information
HTML articles powered by AMS MathViewer
- by Paolo Gibilisco, Daniele Imparato and Tommaso Isola
- Proc. Amer. Math. Soc. 137 (2009), 317-327
- DOI: https://doi.org/10.1090/S0002-9939-08-09447-1
- Published electronically: August 4, 2008
- PDF | Request permission
Abstract:
An inequality relating the Wigner-Yanase information and the $SLD$-quantum Fisher information was established by Luo (Proc. Amer. Math. Soc., 132, pp. 885–890, 2004). In this paper, we generalize Luo’s inequality to any regular quantum Fisher information. Moreover, we show that this general inequality can be derived from the Kubo-Ando inequality, which states that any matrix mean is greater than the harmonic mean and smaller than the arithmetic mean.References
- Donald Bures, An extension of Kakutani’s theorem on infinite product measures to the tensor product of semifinite $w^{\ast }$-algebras, Trans. Amer. Math. Soc. 135 (1969), 199–212. MR 236719, DOI 10.1090/S0002-9947-1969-0236719-2
- N. N. Čencov, Statistical decision rules and optimal inference, Translations of Mathematical Monographs, vol. 53, American Mathematical Society, Providence, R.I., 1982. Translation from the Russian edited by Lev J. Leifman. MR 645898
- Fisher, R. A., Theory of statistical estimation. Proc. Cambridge Philos. Soc., 22: 700–725, 1925.
- B. Roy Frieden, Science from Fisher information, Cambridge University Press, Cambridge, 2004. A unification; Reprint of the 1998 edition [Physics from Fisher information]. MR 2069674, DOI 10.1017/CBO9780511616907
- Paolo Gibilisco, Daniele Imparato, and Tommaso Isola, Uncertainty principle and quantum Fisher information. II, J. Math. Phys. 48 (2007), no. 7, 072109, 25. MR 2337669, DOI 10.1063/1.2748210
- Paolo Gibilisco and Tommaso Isola, A characterisation of Wigner-Yanase skew information among statistically monotone metrics, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001), no. 4, 553–557. MR 1876164, DOI 10.1142/S0219025701000644
- Paolo Gibilisco and Tommaso Isola, Wigner-Yanase information on quantum state space: the geometric approach, J. Math. Phys. 44 (2003), no. 9, 3752–3762. MR 2003930, DOI 10.1063/1.1598279
- Paolo Gibilisco and Tommaso Isola, On the characterisation of paired monotone metrics, Ann. Inst. Statist. Math. 56 (2004), no. 2, 369–381. MR 2067162, DOI 10.1007/BF02530551
- Paolo Gibilisco and Tommaso Isola, On the monotonicity of scalar curvature in classical and quantum information geometry, J. Math. Phys. 46 (2005), no. 2, 023501, 14. MR 2121714, DOI 10.1063/1.1834693
- Gibilisco, P. and Isola, T., Uncertainty principle and quantum Fisher information. Ann. Inst. Stat. Math., 59: 147–159, 2007.
- Hansen, F., Metric adjusted skew information. arXiv:math-ph/0607049v3, 2006.
- Hasegawa, H. and Petz, D., Noncommutative extension of the information geometry II. Quantum Communications and Measurement, pages 109–118. Plenum, New York, 1997.
- Carl W. Helstrom, Quantum detection and estimation theory, J. Statist. Phys. 1 (1969), 231–252. MR 250623, DOI 10.1007/BF01007479
- Fumio Kubo and Tsuyoshi Ando, Means of positive linear operators, Math. Ann. 246 (1979/80), no. 3, 205–224. MR 563399, DOI 10.1007/BF01371042
- Shunlong Luo, Quantum Fisher information and uncertainty relations, Lett. Math. Phys. 53 (2000), no. 3, 243–251. MR 1808252, DOI 10.1023/A:1011080128419
- Shunlong Luo, Wigner-Yanase skew information vs. quantum Fisher information, Proc. Amer. Math. Soc. 132 (2004), no. 3, 885–890. MR 2019969, DOI 10.1090/S0002-9939-03-07175-2
- Luo, S., Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett., 91:180403, 2003.
- Sh. L. Luo, Quantum and classical uncertainties, Teoret. Mat. Fiz. 143 (2005), no. 2, 231–240 (Russian, with Russian summary); English transl., Theoret. and Math. Phys. 143 (2005), no. 2, 681–688. MR 2165897, DOI 10.1007/s11232-005-0098-6
- Dénes Petz, Monotone metrics on matrix spaces, Linear Algebra Appl. 244 (1996), 81–96. MR 1403277, DOI 10.1016/0024-3795(94)00211-8
- Dénes Petz and Csaba Sudár, Geometries of quantum states, J. Math. Phys. 37 (1996), no. 6, 2662–2673. MR 1390228, DOI 10.1063/1.531535
- Dénes Petz and Róbert Temesi, Means of positive numbers and matrices, SIAM J. Matrix Anal. Appl. 27 (2005), no. 3, 712–720. MR 2208330, DOI 10.1137/050621906
- C. Radhakrishna Rao, Information and the accuracy attainable in the estimation of statistical parameters, Bull. Calcutta Math. Soc. 37 (1945), 81–91. MR 15748
- Armin Uhlmann, The metric of Bures and the geometric phase, Quantum groups and related topics (Wrocław, 1991) Math. Phys. Stud., vol. 13, Kluwer Acad. Publ., Dordrecht, 1992, pp. 267–274. MR 1205618, DOI 10.1007/978-94-011-2801-8_{2}3
- E. P. Wigner and Mutsuo M. Yanase, Information contents of distributions, Proc. Nat. Acad. Sci. U.S.A. 49 (1963), 910–918. MR 151127, DOI 10.1073/pnas.49.6.910
Bibliographic Information
- Paolo Gibilisco
- Affiliation: Dipartimento SEFEMEQ, Facoltà di Economia, Università di Roma “Tor Vergata”, Via Columbia 2, 00133 Rome, Italy
- Email: gibilisco@volterra.uniroma2.it
- Daniele Imparato
- Affiliation: Dipartimento di Matematica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
- Email: daniele.imparato@polito.it
- Tommaso Isola
- Affiliation: Dipartimento di Matematica, Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Rome, Italy
- Email: isola@mat.uniroma2.it
- Received by editor(s): February 16, 2007
- Received by editor(s) in revised form: December 10, 2007
- Published electronically: August 4, 2008
- Communicated by: Richard C. Bradley
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc. 137 (2009), 317-327
- MSC (2000): Primary 62B10, 94A17; Secondary 46L30, 46L60
- DOI: https://doi.org/10.1090/S0002-9939-08-09447-1
- MathSciNet review: 2439456