## Dirichlet’s theorem for polynomial rings

HTML articles powered by AMS MathViewer

- by Lior Bary-Soroker
- Proc. Amer. Math. Soc.
**137**(2009), 73-83 - DOI: https://doi.org/10.1090/S0002-9939-08-09474-4
- Published electronically: August 13, 2008
- PDF | Request permission

## Abstract:

We prove the following form of Dirichlet’s theorem for polynomial rings in one indeterminate over a pseudo algebraically closed field $F$. For all relatively prime polynomials $a(X), b(X)\in F[X]$ and for every sufficiently large integer $n$ there exist infinitely many polynomials $c(X)\in F[X]$ such that $a(X) + b(X)c(X)$ is irreducible of degree $n$, provided that $F$ has a separable extension of degree $n$.## References

- M. F. Atiyah and I. G. Macdonald,
*Introduction to commutative algebra*, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1969. MR**0242802** - Lior Bary-Soroker and Moshe Jarden,
*PAC fields over finitely generated fields*, to appear in Math. Z. - Claude Chevalley,
*Introduction to the Theory of Algebraic Functions of One Variable*, Mathematical Surveys, No. VI, American Mathematical Society, New York, N. Y., 1951. MR**0042164** - John D. Dixon and Brian Mortimer,
*Permutation groups*, Graduate Texts in Mathematics, vol. 163, Springer-Verlag, New York, 1996. MR**1409812**, DOI 10.1007/978-1-4612-0731-3 - Michael Fried, Dan Haran, and Moshe Jarden,
*Galois stratification over Frobenius fields*, Adv. in Math.**51**(1984), no. 1, 1–35. MR**728998**, DOI 10.1016/0001-8708(84)90002-1 - Michael D. Fried and Moshe Jarden,
*Field arithmetic*, 2nd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 11, Springer-Verlag, Berlin, 2005. MR**2102046** - Michael D. Fried and Helmut Völklein,
*The embedding problem over a Hilbertian PAC-field*, Ann. of Math. (2)**135**(1992), no. 3, 469–481. MR**1166641**, DOI 10.2307/2946573 - Moshe Jarden and Aharon Razon,
*Pseudo algebraically closed fields over rings*, Israel J. Math.**86**(1994), no. 1-3, 25–59. MR**1276130**, DOI 10.1007/BF02773673 - Heinrich Kornblum,
*Über die Primfunktionen in einer arithmetischen Progression*, Mathematische Zeitschrift**5**(1919), 100–111. - Gunter Malle and B. Heinrich Matzat,
*Inverse Galois theory*, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1999. MR**1711577**, DOI 10.1007/978-3-662-12123-8 - Hugh L. Montgomery and Robert C. Vaughan,
*Multiplicative number theory. I. Classical theory*, Cambridge Studies in Advanced Mathematics, vol. 97, Cambridge University Press, Cambridge, 2007. MR**2378655** - Michael Rosen,
*Number theory in function fields*, Graduate Texts in Mathematics, vol. 210, Springer-Verlag, New York, 2002. MR**1876657**, DOI 10.1007/978-1-4757-6046-0 - Jean-Pierre Serre,
*Local fields*, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR**554237** - Jean-Pierre Serre,
*Topics in Galois theory*, Research Notes in Mathematics, vol. 1, Jones and Bartlett Publishers, Boston, MA, 1992. Lecture notes prepared by Henri Damon [Henri Darmon]; With a foreword by Darmon and the author. MR**1162313**

## Bibliographic Information

**Lior Bary-Soroker**- Affiliation: School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Tel Aviv 69978 Israel
- Address at time of publication: Department of Mathematics, The Hebrew University, Givat Ram, Jerusalem 91904, Israel
- MR Author ID: 797213
- ORCID: 0000-0002-1303-247X
- Email: barylior@post.tau.ac.il
- Received by editor(s): January 29, 2007
- Received by editor(s) in revised form: July 23, 2007, September 11, 2007, and January 2, 2008
- Published electronically: August 13, 2008
- Communicated by: Ted Chinburg
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Proc. Amer. Math. Soc.
**137**(2009), 73-83 - MSC (2000): Primary 12E30, 12E25
- DOI: https://doi.org/10.1090/S0002-9939-08-09474-4
- MathSciNet review: 2439427